Advertisement

Micro Robots for Dynamic Sensor Networks

  • Boaz Benmoshe
  • Kobi Gozlan
  • Nir Shvalb
  • Tal Raskin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8629)

Abstract

In a network of micro sensors, the network capabilities can be greatly enhanced if participant nodes are able to fine-tune their positions. Even when a node is optimally located, it could benefit from subtle maneuvers that optimize the functionality of the node’s directional sensors. In particular, the ability to aim a directional networking interface (e.g., antenna) is essential for low-power networking that is enforced by the tiny form-factor of the nodes. This paper presents a prototype design for a multi-terrain sensor-carrying micro robot, which excels in subtle movements. The robot has an egg-shaped shell, which provides protection, recover-ability and unique maneuvering capabilities in versatile terrains. We demonstrate the advantages of the suggested design in the context of dynamic sensor networks.

Keywords

Dynamic sensor network Micro-robot Bio-inspired robot Egg-shaped robot Directional data link 

References

  1. 1.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Comput. netw. 38(4), 393–422 (2002)CrossRefGoogle Scholar
  2. 2.
    Ben-Moshe, B., Carmi, P., Katz, M.J.: Approximating the visible region of a point on a terrain. GeoInformatica 12(1), 21–36 (2008)CrossRefGoogle Scholar
  3. 3.
    Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.): ANTS 2006. LNCS, vol. 4150. Springer, Heidelberg (2006) Google Scholar
  4. 4.
    El-Hoiydi, A., Decotignie, J.-D.: WiseMAC: An ultra low power MAC protocol for multi-hop wireless sensor networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, pp. 18–31. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  5. 5.
    Floreano, D., Mattiussi, C.: Bio-inspired Artificial Intelligence: Theories, Methods, and Technologies. The MIT Press, Cambridge (2008) Google Scholar
  6. 6.
    Franceschini, N., Ruffier, F., Serres, J.: A bio-inspired flying robot sheds light on insect piloting abilities. Curr. Biol. 17(4), 329–335 (2007)CrossRefGoogle Scholar
  7. 7.
    Gibb, A.M.: New media art, design, and the arduino microcontroller: a malleable tool. Ph.D. thesis, Pratt Institute (2010)Google Scholar
  8. 8.
    Lee, D.T., Schachter, B.J.: Two algorithms for constructing a delaunay triangulation. Int. J. Comput. Inf. Sci. 9(3), 219–242 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Luo, J., Etz, S.P.: A physical model-based approach to detecting sky in photographic images. IEEE Trans. Image Process. 11(3), 201–212 (2002)CrossRefGoogle Scholar
  10. 10.
    Ng, P.C., Liew, S.C., Sha, K.C., To, W.T.: Experimental study of hidden node problem in IEEE 802.11 wireless networks. Sigcomm Poster, p. 26 (2005)Google Scholar
  11. 11.
    Pfeifer, R., Lungarella, M., Iida, F.: Self-organization, embodiment, and biologically inspired robotics. Science 318(5853), 1088–1093 (2007)CrossRefGoogle Scholar
  12. 12.
    Rahman, A., Gburzynski, P.: Hidden problems with the hidden node problem. In: Proceedings of 23rd Biennial Symposium on Communications, pp. 270–273 (2006)Google Scholar
  13. 13.
    Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics WS 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  14. 14.
    Scaglione, A., Servetto, S.: On the interdependence of routing and data compression in multi-hop sensor networks. Wirel. Netw. 11(1–2), 149–160 (2005)CrossRefGoogle Scholar
  15. 15.
    Scarfogliero, U., Stefanini, C., Dario, P.: The use of compliant joints and elastic energy storage in bio-inspired legged robots. Mech. Mach. Theory 44(3), 580–590 (2009)CrossRefzbMATHGoogle Scholar
  16. 16.
    Sibley, G.T., Rahimi, M.H., Sukhatme, G.S.: Robomote: a tiny mobile robot platform for large-scale ad-hoc sensor networks. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA 2002, vol. 2, pp. 1143–1148. IEEE (2002)Google Scholar
  17. 17.
    Siekkinen, M., Hiienkari, M., Nurminen, J.K., Nieminen, J.: How low energy is bluetooth low energy? comparative measurements with zigbee/802.15. 4. In: Wireless Communications and Networking Conference Workshops (WCNCW), 2012 IEEE, pp. 232–237. IEEE (2012)Google Scholar
  18. 18.
    Tubaishat, M., Madria, S.K.: Sensor networks: an overview. IEEE Potentials 22(2), 20–23 (2003)CrossRefGoogle Scholar
  19. 19.
    Wood, R.J.: The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans. Robot. 24(2), 341–347 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Boaz Benmoshe
    • 1
  • Kobi Gozlan
    • 2
  • Nir Shvalb
    • 3
  • Tal Raskin
    • 2
  1. 1.Department of Computer ScienceAriel UniversityArielIsrael
  2. 2.Department of Physics and Department of Electrical EngineeringAriel UniversityArielIsrael
  3. 3.Department of Industrial EngineeringAriel UniversityArielIsrael

Personalised recommendations