Advertisement

A Smart M2M Deployment to Control the Agriculture Irrigation

  • Alberto Reche
  • Sandra Sendra
  • Juan R. Díaz
  • Jaime Lloret
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8629)

Abstract

Wireless sensor networks (WSN) have become in a very powerful infrastructure to manage all kind of services. They provide the mechanism to control a big number of devices distributed around a big geographical space. The implementation of a sensor network is cheap and fast and it allows us to add a smart layer over the physical topology. For these reasons, they have begun to be used in many applications and environments. In this paper, we propose a new smart M2M system based on wireless sensor network to manage and control irrigation sprinklers. Humidity and temperature of soil are used to extract information about soil conditions. The network protocol builds an ad hoc infrastructure to exchange the information over the whole WSN. The proposed algorithm uses the meteorological parameters and characteristics of soil to decide which irrigation sprinklers have to be enabled and when we have to do it. Using our intelligent system we can reduce irrigation water consumption, avoiding activation of sprinklers when they are not needed.

Keywords

Smart algorithm M2M deployment WSN Agriculture irrigation 

References

  1. 1.
    Wanga, W., Zhangb, N., Wangc, M.: Wireless sensors in agriculture and food industry - recent development and future perspective. Comput. Electron. Agric. 50(1), 1–14 (2006)CrossRefGoogle Scholar
  2. 2.
    Sendra, S., Lloret, J., García, M., Toledo, J.F.: Power saving and energy optimization techniques for wireless sensor networks. J. Commun. 6(6), 439–459 (2011)CrossRefGoogle Scholar
  3. 3.
    Alrajeh, N.A., Khan, S., Lloret, J., Loo, J.: Secure routing protocol using cross-layer design and energy harvesting in wireless sensor networks. Int. J. Distrib. Sens. Netw. (2013). http://www.hindawi.com/journals/ijdsn/2013/374796/. Last Accessed 18 Mar 2014
  4. 4.
    Mao, Y., Wu, J.: GFG-assisted human tracking using smart phones. Adhoc Sens. Wirel. Netw. 21(3–4), 259–281 (2014)Google Scholar
  5. 5.
    Zhang, L., Zhao, Z., Li, D., Liu, Q., Cui, Li: Wildlife monitoring using heterogeneous wireless communication network. Adhoc Sens. Wirel. Netw. 18(3–4), 159–179 (2013)Google Scholar
  6. 6.
    Hawbani, A., Wang, X.: Zigzag coverage scheme algorithm and analysis for wireless sensor networks. Netw. Protoc. Algorithms 5(4), 19–38 (2013)CrossRefGoogle Scholar
  7. 7.
    Karim, L., Anpalagan, A., Nasser, N., Almhana, J.: Sensor-based M2M agriculture monitoring systems for developing countries: state and challenges. Netw. Protoc. Algorithms 5(3), 68–86 (2013)CrossRefGoogle Scholar
  8. 8.
    Lloret, J., Bosch, I., Sendra, S., Serrano, A.: A wireless sensor network for vineyard monitoring that uses image processing. Sensors 11(6), 6165–6196 (2011)CrossRefGoogle Scholar
  9. 9.
    Ruiz-Garcia, L., Lunadei, L., Barreiro, P., Robla, J.I.: A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends. Sensors 9(6), 4728–4750 (2009)CrossRefGoogle Scholar
  10. 10.
    Chen, Z., Lu, C.: Humidity sensors: a review of materials and mechanisms. Sens. Lett. 3(4), 274–295 (2005)CrossRefGoogle Scholar
  11. 11.
    Pierce, F.J., Elliott, T.V.: Regional and on-farm wireless sensor networks for agricultural systems in Eastern Washington. Comput. Electron. Agric. 61(1), 32–43 (2008)CrossRefGoogle Scholar
  12. 12.
    IEEE Std 802.15.1-2002 – IEEE Standard for Information technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements Part 15.1: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs)Google Scholar
  13. 13.
    Moraisa, R., Fernandes, M.A., Matos, S.G., Serôdio, C., Ferreira, P.J.S.G., Reis, M.J.C.S.: A ZigBee multi-powered wireless acquisition device for remote sensing applications in precision viticulture. Comput. Electron. Agric. 62(2), 94–106 (2008)CrossRefGoogle Scholar
  14. 14.
    Yoo, S.E., Kim, J.E., Kim, T., Ahn, S., Sung, J., Kim, D.: A 2S: automated agriculture system based on WSN. In: Proceedings of IEEE International Symposium on Consumer Electronics, (ISCE 2007), Dallas, Texas, USA, 20–23 June 2007Google Scholar
  15. 15.
    Kim, Y., Evans, R.G.: Software design for wireless sensor-based site-specific irrigation. Comput. Electron. Agric. 66(2), 159–165 (2009)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Arduino web site. http://www.arduino.cc/es/. Last Accessed 18 Mar 2014
  17. 17.
    VH400 Soil Moisture Sensor features. http://www.vegetronix.com/Products/VG400/. Last Accessed 18 Mar 2014
  18. 18.
    THERM200 Soil Temperature Sensor features. http://www.vegetronix.com/Products/THERM200/. Last Accessed 18 Mar 2014
  19. 19.
    López, A., Soto, F., Suardíaz, J., Sánchez, P., Iborra, A., Vera, J.A.: Wireless sensor networks for precision horticulture in Southern Spain. Comput. Electron. Agric. 68(1), 25–35 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alberto Reche
    • 1
  • Sandra Sendra
    • 2
  • Juan R. Díaz
    • 2
  • Jaime Lloret
    • 2
  1. 1.Departamento InformáticaServicio Aragonés SaludAlcañiz, ZaragozaSpain
  2. 2.Instituto de Investigación para la Gestión Integrada de zonas CosterasUniversidad Politécnica de ValenciaGrao de Gandia, ValenciaSpain

Personalised recommendations