Skip to main content

Nuclear Thermodynamics

  • Chapter
Particles and Nuclei

Part of the book series: Graduate Texts in Physics ((GTP))

  • 122k Accesses

Abstract

Highly excited nuclei are characterised by their temperature. We present a thermodynamical description of nuclei and discuss compound nuclei and quantum chaos. Heavy ion reactions have proven themselves especially useful in the investigation of the thermodynamical properties of nuclear matter. Aspects of transitions from a liquid to a gaseous state are discussed as well as the phase diagram of hadronic matter and the possible formation of a quark-gluon plasma. The results of nuclear thermodynamics are also of great importance for cosmology and astrophysics. At the end of this chapter we depict current ideas about the evolution of the universe and show the consequences of this evolution for our modern picture of particle physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A similar process takes place in stars: the electromagnetic radiation in the interior of the Sun is at many millions of K. On its way out it cools down via interactions with matter. What we observe is white light whose spectrum corresponds to the temperature of the solar surface. In contrast to hot nuclear matter, the Sun is of course in equilibrium and is not expanding.

  2. 2.

    The above analogy from astrophysics is also applicable here: the neutrinos which are created in fusion reactions in the solar interior are almost unhindered in their escape from the Sun. Their energy spectrum thus corresponds to the temperature at their production point and not to that of the surface.

  3. 3.

    In principle the standard model of particle physics fulfils the three conditions, but predicts a matter-antimatter asymmetry that is smaller than the observed one (20.5) by ten orders of magnitude.

References

  1. P.A.R. Ade et al., arXiv:1303.5076

    Google Scholar 

  2. L. Bergström, A. Goobar, Cosmology and Particle Astrophysics, 2nd edn. (Springer, Berlin/Heidelberg/New York/Tokyo, 2006)

    Google Scholar 

  3. G. Bertone, Particle Dark Matter (Cambridge University Press, Cambridge, 2010)

    Book  MATH  Google Scholar 

  4. H.A. Bethe, G. Brown, Sci. Am. 252, 40 (1985)

    Article  ADS  Google Scholar 

  5. A. Bohr, B.R. Mottelson, Nuclear Structure (Benjamin, New York, 1969)

    Google Scholar 

  6. C. Budtz-Jorgensen, H.-H. Knitter, Nucl. Phys. A490, 307 (1988)

    Article  ADS  Google Scholar 

  7. E.M. Burbidge et al., Rev. Mod. Phys. 29, 547 (1957)

    Article  ADS  Google Scholar 

  8. C.W. Cook et al., Phys. Rev. 107, 508 (1957)

    Article  ADS  Google Scholar 

  9. T. Ericson, T. Mayer-Kuckuk, Annu. Rev. Nucl. Sci. 16, 183 (1966)

    Article  ADS  Google Scholar 

  10. D.J. Fixsen et al., Astrophys. J. 473, 576 (1996)

    Article  ADS  Google Scholar 

  11. P. Glässel et al., Nucl. Phys. A502, 315c (1989)

    Google Scholar 

  12. G. Hinshaw et al., Astrophys. J. Suppl. 170, 288 (2007)

    Article  ADS  Google Scholar 

  13. G. Hinshaw et al., Astrophys. J. Suppl. 208, 19 (2013)

    Article  ADS  Google Scholar 

  14. F. Hoyle. Mon. Not. R. Astro. Soc. 106, 343 (1946)

    Article  ADS  Google Scholar 

  15. F. Hoyle, Astrophys. J. Suppl. 1, 121 (1954)

    Article  ADS  Google Scholar 

  16. A.A. Penzias, R.W. Wilson, Astrophys. J. 142, 419 (1965)

    Article  ADS  Google Scholar 

  17. J. Pochodzalla et al., Phys. Rev. Lett. 75, 1040 (1995)

    Article  ADS  Google Scholar 

  18. E.E. Salpeter, Astrophys. J. 115, 326 (1952)

    Article  ADS  Google Scholar 

  19. S. Serjeant, Observational Cosmology (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  20. J.M. Smith, Did Darwin Get It Right? (Chapman & Hall, New York/London, 1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Povh, B., Rith, K., Scholz, C., Zetsche, F., Rodejohann, W. (2015). Nuclear Thermodynamics. In: Particles and Nuclei. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46321-5_20

Download citation

Publish with us

Policies and ethics