Skip to main content

Enhanced Solvent-Stable Alpha Glycosidase Production by Bacillus licheniformis JXC-1 by Optimization of Feeding Strategies

  • Conference paper
  • First Online:
  • 1750 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 333))

Abstract

In the previous work, we screened a strain (Bacillus licheniformis JXC-1) producing solvent-stable (10 % N,N-Dimethylformamide, short for DMF) α-glucosidase from several different soil samples. In this work, we attempt to improve the α-glucosidase production by optimization of feeding strategies in a 3-L fermenter. Specifically, the key factors of solvent-tolerant α-glycosidase production were investigated first, and the optimal conditions (pH 7.0, the initial maltose concentration 25 g/L, and agitation speed 600 rpm) were obtained; the enzyme activity reached 444.7 U/L under the optimal conditions. Then, four feeding strategies with different feeding rates for 4–8 h to feed maltose or both maltose and tryptone were carried out, and it was found that feeding maltose and tryptone at a rate of 2.25 mL/h (4–5 h), 6.75 mL/h (5–6 h), 9 mL/h (6–7 h), and 15 mL/h (7–8 h) significantly increased the α-glycosidase production, from 444.7 to 872.5 U/L.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Carvalho AFA, Martin N, Da Silva R et al (2009) Properties of the purified glycosylated alpha-glucosidase produced by thermophilic fungus Thermoascus aurantiacus CBMAI 756 in submerged fermentation. New Biotechnol 25:S48–S48. doi:10.1016/j.nbt.2009.06.254

  2. Cihan AC, Ozcan B, Cokmus C (2009) Characterization of thermostable α-glucosidases from newly isolated Geobacillus sp. A333 and thermophilic bacterium A343. World J Microbiol Biotechnol 25:2205–2217. doi:10.1007/s11274-009-0127-y

    Article  CAS  Google Scholar 

  3. Sato F, Okuyama M, Nakai H et al (2005) Glucoamylase originating from Schwanniomyces occidentalis is a typical α-glucosidase. Biosci Biotechnol Biochem 69:1905–1913

    Article  CAS  Google Scholar 

  4. Shimba N, Shinagawa M, Hoshino W et al (2009) Monitoring the hydrolysis and transglycosylation activity of alpha-glucosidase from Aspergillus niger by nuclear magnetic resonance spectroscopy and mass spectrometry. Anal Biochem 393:23–28. doi:10.1016/j.ab.2009.06.002

    Article  CAS  Google Scholar 

  5. Carvalho AFA, Boscolo M, Da Silva R et al (2010) Purification and characterization of the alpha-glucosidase produced by thermophilic fungus Thermoascus aurantiacus CBMAI 756. J Microbiol 48:452–459. doi:10.1007/s12275-010-9319-2

    Article  CAS  Google Scholar 

  6. Da Silva TM et al (2009) Purification and biochemical characterization of a novel alpha-glucosidase from Aspergillus niveus. Antonie Van Leeuwenhoek 96:569–578. doi:10.1007/s10482-009-9372-1

    Article  Google Scholar 

  7. Carvalho AFA, Leite RSR, Martins E et al (2007) Partially purified and characterization of the α-glucosidase produced by thermophilic fungus Thermoascus aurantiacus CBMAI 756 in submerged fermentation. J Biotechnol 131:S232. doi:10.1016/j.jbiotec.2007.07.422

    Article  Google Scholar 

  8. Tang XY, Pan Y, Li S et al (2008) Screening and isolation of an organic solvent-tolerant bacterium for high-yield production of organic solvent-stable protease. Bioresour Technol 99:7388–7392. doi:10.1016/j.biortech.2008.01.030

    Article  CAS  Google Scholar 

  9. Gupta A, Khare SK (2009) Enzymes from solvent-tolerant microbes: useful biocatalysts for non-aqueous enzymology. Crit Rev Biotechnol 29:44–54. doi:10.1080/07388550802688797

    Article  CAS  Google Scholar 

  10. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246

    Article  CAS  Google Scholar 

  11. Karadzic I, Masui A, Zivkovic LI et al (2006) Purification and characterization of an alkaline lipase from Pseudomonas aeruginosa isolated from putrid mineral cutting oil as component of metalworking fluid. J Biosci Bioeng 102:82–89. doi:10.1263/jbb.102.82

    Article  CAS  Google Scholar 

  12. Gupta A, Khare SK (2007) Enhanced production and characterization of a solvent stable protease from solvent tolerant Pseudomonas aeruginosa PseA. Enzym Microbial Technol 42:11–16. doi:10.1016/j.enzmictec.2007.07.019

    Article  CAS  Google Scholar 

  13. Chen Z, Xueming W, Bingfang H (2010) Development of glycosidase biocatalysis in non-aqueous phase. Chem Ind Eng Prog 29:1292–1299

    Google Scholar 

  14. Zhou L, Li J, Liu L et al (2013) Screening a new α-glucosidase dimethylformamide-tolerant and optimization the transformation conditions of biosynthesising quercetin-d-glucopyranosides Industrial. Microbiology 43:8–13

    Google Scholar 

  15. Hung VS et al (2005) Alpha-Glucosidase from a strain of deep-sea Geobacillus: a potential enzyme for the biosynthesis of complex carbohydrates. Appl Microbiol Biotechnol 68:757–765. doi:10.1007/s00253-005-1977-3

    Article  CAS  Google Scholar 

  16. Saqib AAN, Whitney PJ (2011) Differential behaviour of the dinitrosalicylic acid (DNS) reagent towards mono- and di-saccharide sugars. Biomass Bioenergy 35:4748–4750. doi:10.1016/j.biombioe.2011.09.013

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianghua Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fang, J., Tang, Q., Liu, L., Li, J. (2015). Enhanced Solvent-Stable Alpha Glycosidase Production by Bacillus licheniformis JXC-1 by Optimization of Feeding Strategies. In: Zhang, TC., Nakajima, M. (eds) Advances in Applied Biotechnology. Lecture Notes in Electrical Engineering, vol 333. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46318-5_34

Download citation

Publish with us

Policies and ethics