Skip to main content

Chemische Strukturaufklärung

  • Chapter
  • First Online:
Stoffliche Nutzung von Braunkohle

Zusammenfassung

Die Charakterisierung der Energierohstoffe auf molekularer Ebene und in Bezug auf mineralische Bestandteile erfolgte in drei Schwerpunkten. Zum ersten sind konventionelle Methoden der Infrarot- und NMR-Spektroskopie für die Beschreibung von Kohlestrukturgruppen weiterentwickelt worden. Für die Analyse höher molekularer organischer Verbindungen bis hin zur Charakterisierung von Makromolekülen in Kohlen und Biomasse ist erstmalig die ultra-hochaufgelöste Fourier-Transform-Ionenzyklotron-Resonanz Massenspektrometrie (FT-ICR-MS) eingesetzt worden. Im dritten Schwerpunkt der chemischen Strukturaufklärung stand die Multielementanalytik aller prozessrelevanten mineralischen Bestandteile im Fokus. Hierzu wurde die elektrothermische Verdampfung in Kombination mit der Plasma-Atomemissionsspektrometrie (ETV-ICP OES) weiterentwickelt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Arthen-Engeland T, Dunsbach R (2008) New generation of GC/high resolution TOF-MS: APCI/APLI source for increased flexibility: a new APCI/APLI source enables a high resolution TOF-MS to be coupled on LC and GC, thus increasing flexibility and performance of TOF-MS in combination with GC. Bruker: the applications book. LC-GC Eur 34–35

    Google Scholar 

  2. Axelson DE (2012) Solid state nuclear magnetic resonance, a practical introduction. CreateSpace Independent Publishing Platform, North Charlston, SC

    Google Scholar 

  3. Bauer D, Rathsack P, Rönnefahrt M, Schmidt M, Wolf B, Kroll M, Otto M (2013) Deutsches Energie-Rohstoff-Zentrum Freiberg Technologien für das Nach-Erdölzeitalter. TU Bergakademie Freiberg, Institut für Analytische Chemie, Freiberg

    Google Scholar 

  4. Bauer D, Vogt T, Klinger M, Masset PJ, Otto, M (2014) Direct determination of sulfur species in coals from the argonne premium sample program by solid sampling electrothermal vaporization inductively coupled plasma optical emission spectrometry. Anal Chem 86(20):10380–10388

    Book  Google Scholar 

  5. Bauer D, Vogt T, Lehmann F, Otto M (2014) Direkte Schwefelbestimmung in Kohle mittels elektrothermischer Verdampfung gekoppelt mit Atomemissionsspektrometrie. Chemie Ingenieur Technik 86:1806–1811

    Article  Google Scholar 

  6. Bryers RW (1996) Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Prog Energy Combust Sci 22:29–120

    Article  Google Scholar 

  7. Budzikiewicz H, Schäfer M (2005) Massenspektrometrie – Eine Einführung. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  8. Carrasco-Pancorbo A, Nevedomskaya E, Arthen-Engeland T, Zey T, Zurek G, Baessmann C, Deelder AM, Mayboroda OA (2009) Gas chromatography/atmospheric pressure chemical ionization-time of flight mass spectrometry: analytical validation and applicability to metabolic profiling. Anal Chem 81:10071–10079

    Article  Google Scholar 

  9. Chou C-L (2012) Sulfur in coals: a review of geochemistry and origins. Int J Coal Geol 100:1–13

    Article  Google Scholar 

  10. Coleman PB (1993) Practical sampling techniques for infrared analysis. CRC Press, Boca Raton

    Google Scholar 

  11. David F, Dunkle M, Tienpont B, Mitsui K, Ochiai N, Sasamoto K, Higashi N, Sandra P (2013) Gas chromatography with soft ionization mass spectrometry for the characterization of natural products. LC-GC Eur 548–556

    Google Scholar 

  12. Dean JR (2009) Extraction techniques in analytical sciences, 1. Aufl. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  13. Demirbas A (2009) Biorefineries: current activities and future developments. Energy Convers Manage 50(11):2782–2801

    Article  Google Scholar 

  14. Detcheva A, Barth P, Hassler J (2009) Calibration possibilities and modifier use in ETV ICP OES determination of trace and minor elements in plant materials. Anal Bioanal Chem 394:1485–1495

    Article  Google Scholar 

  15. Eilers PHC, Boelens HFM (2005) Baseline correction with asymmetric least squares smoothing. Draft. Universiteit van Amsterdam. http://www.science.uva.nl/hboelens/publications/draftpub/Eilers_2005.pdf. Zugegriffen: 25. Juni 2014

  16. Erickson TA, Allan SE, McCollor DP, Hurley JP, Srinivasachar S, Kang SG, Baker JE, Morgan ME, Johnson SA, Borio R (1995) Modelling of fouling and slagging in coal-fired utility boilers. Fuel Process Technol 44:155–171

    Article  Google Scholar 

  17. Glombitza C, Mangelsdorf K, Horsfield B (2009) A novel procedure to detect low molecular weight compounds released by alkaline ester cleavage from low maturity coals to assess its feedstock potential for deep microbial life. Org Geochem 40(2):175–183

    Article  Google Scholar 

  18. Glombitza C, Mangelsdorf K, Horsfield B (2009) Maturation related changes in the distribution of ester bound fatty acids and alcohols in a coal series from the New Zealand Coal Band covering diagenetic to catagenetic coalification levels. Org Geochem 40(10):1063–1073

    Article  Google Scholar 

  19. Glombitza C, Mangelsdorf K, Horsfield B (2011) Structural insights from boron tribromide ether cleavage into lignites and low maturity coals from the New Zealand Coal Band. Org Geochem 42:228–236

    Article  Google Scholar 

  20. Grigore M, Sakurovs R, French D, Sahajwalla V (2008) Mineral matter in coals and their reactions during coking. Int J Coal Geol 76:301–308

    Article  Google Scholar 

  21. Gross JH (2013) Massenspektrometrie, Kap. 11. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  22. Hatt R (1996) Correlating the slagging of a utility boiler with coal characteristics. Springer, New York

    Book  Google Scholar 

  23. Hattingh BB, Everson RC, Neomagus HW, Bunt JR (2011) Assessing the catalytic effect of coal ash constituents on the CO2 gasification rate of high ash, South African coal. Fuel Process Technol 92:2048–2054

    Article  Google Scholar 

  24. Hillenkamp F, Peter-Katalinic J (2007) MALDI MS. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  25. Höld IM, Brussee NJ, Schouten S, Sinninghe Damsté JS (1998). Changes in the molecular structure of a type II-S kerogen (Monterey Formation, U.S.A.) during sequential chemical degradation. Org Geochem 29(5–7):1403–1417

    Google Scholar 

  26. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 2006 106(9):4044–4098

    Article  Google Scholar 

  27. Hübschmann HJ (2009) Handbook of GC/MS. Fundamentals and applications. Wiley-VCH, Weinheim

    MATH  Google Scholar 

  28. Huggins FE (2002) Overview of analytical methods for inorganic constituents in coal. Int J Coal Geol 50:169–214

    Article  Google Scholar 

  29. Hyver KJ (1988) Use of small diameter WCOT columns for ultra-high resolution GC/MS. J High Res Chromatog 11:69–72

    Article  Google Scholar 

  30. Kendrick E (1963) Mass scale based on CH2 = 14.0000 for high resolution mass spectrometry of organic compounds. Anal Chem 35:2146–2154

    Article  Google Scholar 

  31. Kerber A, Laue R, Meringer M, Rücker Ch, Schymanski E (2014) Mathematical chemistry and chemoinformatics. De Gruyter, Berlin

    MATH  Google Scholar 

  32. Kessler W (2007) Multivariate datenanalyse. Wiley-VCH, Weinheim

    Google Scholar 

  33. KF Application Note No. K-10, Water in coal dust, Metrohm. http://partners.metrohm.com/GetDocument?action=get_dms_document&docid=695506. Zugegriffen: 16. Okt. 2014

  34. Klass DL (1998) Biomass for renewable energy, fuels, and chemicals. Academic Press, SanDiego

    Google Scholar 

  35. Krevelen van (1957) Aspects of coal constitution. Coal science. Elsevier, Amsterdam, S 375 ff

    Google Scholar 

  36. Kroll M, Bauer D, Wolf B, Rathsack P, Otto M (2012) Kohle und Biomasse unter der Ultra-Hochauflösungslupe FT-ICR-MS, Schwarzes Gold. labore&more 4/2012, S 32–35

    Google Scholar 

  37. Kroll M, Wolf B, Otto M (2012) Methoden zur Identifikation von Verbindungen in Kohlen und Pyrolyseölen mittels FT-ICR-MS. Poster DER-TAG. TU Bergakademie Freiberg, Institut für Analytische Chemie, Freiberg

    Google Scholar 

  38. Kroll M, Schmidt M, Brendler E, Bauer D, Rathsack P, Wolf B, Otto M (2013) Ionenzyklotron- und kernmagnetische Resonanz-Spektrometrie zur Kohleanalytik. Freunde und Förderer der TU Bergakademie Freiberg e.V., Freiberg, 20. Jahrgang, S 54–57

    Google Scholar 

  39. Lebedev AT, Polyakova OV, Mazur DM, Artaev VB (2013) The benefits of high resolution mass spectrometry in environmental analysis. Analyst 138:6946–6953

    Article  Google Scholar 

  40. Mao JD, Hu WG, Schmidt-Rohr K,Davies G, Ghabbour EA, Xing B (2000) Quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic resonance. Soil Sci Soc Am J 64:873–884

    Article  Google Scholar 

  41. Maroto-Valer MM, Taulbee DN, Andrésen JM, Hower JC, Snape CE (1998) Quantitative 13C NMR study of structural variations within the vitrinite and inertinite maceral groups for a semifusinite-rich bituminous coal. Fuel 77:805–813

    Article  Google Scholar 

  42. Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand JO, Bujoli B, Gan Z, Hoatson G (2002) Modelling one- and two-dimensional solid state NMR spectra. Magn Reson Chem 40:70–76

    Article  Google Scholar 

  43. McEwen CN, McKay RG (2005) A combination atmospheric pressure LC/MS:GC/MS ion source: advantages of dual AP-LC/MS:GC/MS instrumentation. J Am Soc Mass Spectr 16:1730–1738

    Article  Google Scholar 

  44. Metz G, Ziliox M, Smith SO (1996) Towards quantitative CP-MAS NMR. Solid State Nucl Magn Reson 7:155–160

    Article  Google Scholar 

  45. National Institute of Standards & Technology (2011) Certificate of analysis: standard reference material 1632d. Trace Elements in Coal, Gaithersburg

    Google Scholar 

  46. Nölte J (2002) ICP Emissionsspektrometrie für Praktiker: Grundlagen, Methodenentwicklung, Anwendungsbeispiele. Wiley-VCH Verlag GmbH, Weinheim

    Book  Google Scholar 

  47. Ochsenkühn-Petropoulou M, Lampropoulou A, Becker H, Spyra W (2001) Polycyclic aromatic hydrocarbons in wooden railway beams impregnated with coal tar: extraction and quantification by GC-MS. Microchim Acta 136:185–191

    Google Scholar 

  48. Oehme M (1986) Hochauflösende Gas-Chromatographie. Dr. A. Hüthig Verlag, Heidelberg

    Google Scholar 

  49. Oleschko H, Schimrosczyk A, Lippert H, Mueller M (2007) Influence of coal composition on the release of Na-, K-, Cl-, and S-species during the combustion of brown coal. Fuel 86:2275–2282

    Article  Google Scholar 

  50. Otto M (1997) Chemometrie. Wiley-VCH, Weinheim

    Google Scholar 

  51. Otto M (2011) Analytische Chemie, 4. Aufl. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  52. Palmer C (1997) The chemical analysis of argonne premium coal samples, 2144. Aufl. United States Government Printing Office, Washington

    Google Scholar 

  53. Portolés T, Mol JGJ, Sancho JV, Hernández F (2012) Advantages of atmospheric pressure chemical ionization in gas chromatography tandem mass spectrometry: pyrethroid insecticides as a case study. Anal Chem 84:9802–9810

    Article  Google Scholar 

  54. Richnow HH, Jenisch A, Michaelis W (1992) Structural investigations of sulphur-rich macromolecular oil fractions and a kerogen by sequential chemical degradation. Org Geochem 19(4–6):351–370

    Article  Google Scholar 

  55. Richter BE, Jones BA, Ezzell JL, Porter NL (1996) Accelerated solvent extraction: a technique for sample preparation. Anal Chem 68(6):1033–1039

    Article  Google Scholar 

  56. Schiewek R, Schellenträger M, Mönnikes R, Lorenz M, Giese R, Brockmann KJ, Gäb S, Benter T, Schmitz OT (2007) Ultrasensitive determination of polycyclic aromatic compounds with atmospheric-pressure laser ionization as an interface for GC/MS. Anal Chem 79:4135–4140

    Article  Google Scholar 

  57. Schmidt MWI, Knicker H, Hatcher PG, Kögel-Knabner I (1997) Improvement of 13C and 15N CPMAS NMR spectra of bulk soils, particle size fractions and organic material by treatment with 10 %hydrofluoric acid. Eur J Soil Sci 48:319–328

    Article  Google Scholar 

  58. Silbernagel BG, Gebhard LA, Flowers II RA, Larsen JW (1991) Demineralization effects on the EPR properties of argonne premium coals. Energy Fuels 5:561–568

    Article  Google Scholar 

  59. solariX User Manual Revision 3 (2011) Bruker Daltonik GmbH, Bremen

    Google Scholar 

  60. Speight JG (2005) Handbook of coal analysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  61. Stader C, Beer FT, Achten C (2013) Environmental PAH analysis by gas chromatography-atmospheric pressure laser ionization-time-of-flight-mass spectrometry. Anal Bioanal Chem 405:7041–7052

    Article  Google Scholar 

  62. Varmuza K, Filzmoser P (2009) Introduction to multivariate statistical analysis in chemometrics. CRC Press, Boca Raton

    Book  Google Scholar 

  63. Vassilev SV, Tascón JMD (2003) Methods for characterization of inorganic and mineral matter in coal: a critical overview. Energy Fuels 17:271–281

    Article  Google Scholar 

  64. Vassilev SV, Vassileva CG (1996) Occurrence, abundance and origin of minerals in coals and coal ashes. Fuel Process Technol 48:85–106

    Article  Google Scholar 

  65. Vassileva CG, Vassilev SV (2005) Behaviour of inorganic matter during heating of Bulgarian coals. Fuel Process Technol 86:1297–1333

    Article  Google Scholar 

  66. Vogt T, Tesch S, Otto M, Hassler J (2012) Trace analysis in silicon. Electrothermal vaporization for direct solid analysis. GIT Labor-Fachz 56:588–590

    Google Scholar 

  67. Vogt T, Bauer D, Neuroth M, Otto M (2015) Quantitative multi-element analysis of Argonne Premium Coal samples by ETV-ICP OES – a highly efficient direct analytical technique for inorganics in coal. Fuel 152:96–102

    Article  Google Scholar 

  68. Vogt T, Bauer D, Nennstiel D, Otto M (2015) Solid-sampling electrothermal vaporization inductively coupled plasma optical emission spectrometry for direct determination of total oxygen in coal. Anal Chem 87:10414–10420

    Article  Google Scholar 

  69. Vorres K (1990) The argonne premium coal sample program. Energy Fuels 420–426

    Article  Google Scholar 

  70. Ward CR (2002) Analysis and significance of mineral matter in coal seams. Int J Coal Geol 50:135–168

    Article  Google Scholar 

  71. Wollenweber J, Schwarzbauer J, Littke R, Wilkes H, Armstroff A, Horsfield B (2006) Characterisation of non-extractable macromolecular organic matter in Palaeozoic coals. Palaeogeogr Palaeocl Palaeoecol 240(1–2):275–304

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mirjam Schmidt , Daniela Vogt or Bianca Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmidt, M. et al. (2018). Chemische Strukturaufklärung. In: Krzack, S., Gutte, H., Meyer, B. (eds) Stoffliche Nutzung von Braunkohle. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46251-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46251-5_9

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46250-8

  • Online ISBN: 978-3-662-46251-5

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics