Skip to main content

Korrosionsverhalten keramischer Filterkerzen

  • Chapter
  • First Online:
Stoffliche Nutzung von Braunkohle

Zusammenfassung

Die aggressive, wasserdampf- und alkalireiche Prozessumgebung einer allothermen Wirbelschichtvergasung bedingt die Korrosion keramischer Komponenten wie Filterkerzen. Deswegen wurde die Korrosionsbeständigkeit verschiedener, potentieller Filterkerzenmaterialien unter betriebsrelevanten Bedingungen charakterisiert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Alvin MA (1995) Characterization of ash and char formations in advanced high temperature particulate filtration systems. Fuel Process Technol 44:237–283

    Article  Google Scholar 

  2. Alvin MA (1996) Advanced ceramic materials for use in high-temperature particulate removal systems. Ind Eng Chem Res 35:3384–3398

    Article  Google Scholar 

  3. Alvin MA (1998) Impact of char and ash fines on porous ceramic filter life. Fuel Process Technol 56:143–168

    Article  Google Scholar 

  4. Alvin MA, Lippert TE, Lane JE (1991) Assessment of porous ceramic materials for hot gas filtration applications. Am Ceram Soc Bull 70:1491–1498

    Google Scholar 

  5. Bläsing M, Schaafhausen S, Müller M (2014) Investigation of alkali induced corrosion of SiC filter candles at high temperature in gasification environment. J Eur Ceram Soc 34:1041–1044

    Article  Google Scholar 

  6. Ciliberti DF, Lippert TE (1981) Evaluation of ceramic fiber filters for hot gas cleanup in pressurized fluidized bed combustion power plants. Electric Power Research Institute, Palo Alto, CA

    Google Scholar 

  7. Corella J, Toledo JM, Padilla R (2005) Catalytic hot gas cleaning with monoliths in biomass gasification in fluidized beds. 3. Their effectiveness for ammonia elimination. Ind Eng Chem Res 44:2036–2045

    Article  Google Scholar 

  8. Costello JA, Tressler RE (1986) Oxidation kinetics of silicon carbide crystals and ceramics: I. In dry oxygen. J Am Ceram Soc 69:674–681

    Article  Google Scholar 

  9. Deal BE, Grove AS (1965) General relation for the thermal oxidation of silicon. J Appl Phys 36:3770–3778

    Article  Google Scholar 

  10. Diaz-Somoano M, Martinez-Tarazona MR (2005) Retention of zinc compounds in solid sorbents during hot gas cleaning processes. Energy Fuels 19:442–446

    Article  Google Scholar 

  11. Dinescu R (1962) Behavior of some refractory oxides wetted by a melted glass. Acad Rep Populare Romine, Studii Cercetari Met 7:337–349

    Google Scholar 

  12. Eggerstedt P M, Zievers J F (1987) Particulate and multiphase processes, Bd 1. Taylor and Francis, London, S 27–42

    Google Scholar 

  13. Guan X, Gardner B, Martin RA, Spain J (2008) Demonstration of hot gas filtration in advanced coal gasification system. Powder Technol 80:122–128

    Article  Google Scholar 

  14. Hack K, Jantzen T, Müller M, Yazhenskikh E, Wu G (2012) A novel thermodynamic database for slag systems and refractory materials. In: Proceedings of the 5th International Congress on the Science and Technology of Steelmaking, ICS 2012, Dresden, Germany

    Google Scholar 

  15. Hofbauer H, Rauch R, Bosch K, Koch R, Aichernig C (2009) Biomass CHP Plant Güssing – A Success Story. In: Expert Meeting on Pyrolysis and Gasification of Biomass and Waste, Strasbourg, France

    Google Scholar 

  16. Karl J (2006) Dezentrale Energiesysteme: Neue Technologien im liberalisierten Energiemarkt. Oldenbourg Verlag, München

    Book  Google Scholar 

  17. Krasnyi BL, Tarasovskii V PVal’dberg AY, Kaznacheeva TO (2005) Porous permeable ceramics for filter elements cleaning hot gases from dust. Glass Ceram 62:134–138

    Article  Google Scholar 

  18. Maeda M, Nakamura K, Ohkubo T (1988) Oxidation of silicon carbide in a wet atmosphere. J Mater Sci 23:3933–3938

    Article  Google Scholar 

  19. Martin RA, Gardner B, Spain JD, Guan X (2004) Characterization of candle filter elements in coal gasification operation. American Filtration and Separations Society, S 543–551

    Google Scholar 

  20. Munz D, Fett T (1989) Mechanisches Verhalten keramischer Werkstoffe. Springer-Verlag, Berlin

    Book  Google Scholar 

  21. Narushima T, Goto T, Iguchi Y, Hirai T (1990) High-temperature oxidation of chemically vapor-deposited silicon carbide in wet oxygen at 1823 to 1923 K. J Am Ceram Soc 73:3580–3584

    Article  Google Scholar 

  22. Pastila P, Helanti V, Nikkila AP, Mantyla T (2001) Environmental effects on microstructure and strength of SiC-based hot gas filters. J Eur Ceram Soc 21:1261–1268

    Article  Google Scholar 

  23. Pickrell GR, Sun T, Brown JJ (1995) High temperature alkali corrosion of SiC and Si3N4. Fuel Process Technol 44:213–236

    Google Scholar 

  24. Rapagna S, Gallucci K, Di MM, Foscolo PU, Nacken M, Heidenre-ich S (2009) In situ catalytic ceramic candle filtration for tar reforming and particulate abatement in a fluidized-bed biomass gasifier. Energy Fuels 23:3804–3809

    Article  Google Scholar 

  25. Ryś-Matejczuk M, Müller M (2013) Corrosion behaviour of ceramic filter candle materials for hot gas filtration under biomass gasification conditions at 850 °C. Adv Appl Ceram 112:466–470

    Article  Google Scholar 

  26. Schaafhausen S, Yazhenskikh E, Heidenreich S, Müller M (2014) Corrosion of silicon carbide hot gas filter candles in gasification environment. J Eur Ceram Soc 34:575–588

    Article  Google Scholar 

  27. Steenari BM, Karlfeldt FK (2010) Addition of kaolin as potassium sorbent in the combustion of wood fuel – effects on fly ash properties. Fuel 89:2026–2032

    Article  Google Scholar 

  28. Stringer J, Leitch AJ (1992) Ceramic candle filter performance at the Grimethorpe (UK) pressurized bed combustor. J Eng Gas Turbines Power 114:371–379

    Article  Google Scholar 

  29. Sun T, Pickrell GR, Brown JJ (1994) Gaseous alkali corrosion kinetics of silicon carbide. Mater Res Soc Symp Proc 327:325–330

    Article  Google Scholar 

  30. Vaughn WL, Maahs HG (1990) Active-to-passive transition in the oxidation of silicon carbide and silicon nitride in air. J Am Ceram Soc 73:1540–1543

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schaafhausen, S., Yazhenskikh, E., Walch, A., Heidenreich, S., Müller, M. (2018). Korrosionsverhalten keramischer Filterkerzen. In: Krzack, S., Gutte, H., Meyer, B. (eds) Stoffliche Nutzung von Braunkohle. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46251-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46251-5_31

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46250-8

  • Online ISBN: 978-3-662-46251-5

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics