Skip to main content

Mineralstoffverhalten

  • Chapter
  • First Online:
Book cover Stoffliche Nutzung von Braunkohle

Zusammenfassung

Das Mineralstoffverhalten von Energierohstoffen ist ein zentraler Aspekt für die Entwicklung und den Betrieb von Hochtemperatur‐Konversionsprozessen. In diesem Kapitel werden grundlegende Untersuchungsmethoden zur Charakterisierung von Brennstoffaschen und deren Hochtemperaturverhalten, wie Ascheschmelzverhalten, Röntgenfluoreszenzanalyse, Hochtemperatur‐Röntgendiffraktometrie bis hin zu thermochemischen Gleichgewichtsberechnungen beschrieben und durch Untersuchungen an Testaschen erläutert. Werden Prozesseoberhalb der Ascheschmelztemperatur betrieben, müssen die physikalischen Eigenschaften der dabei entstehenden Schlacken betrachtet werden. Vorgestellt werden Messmethoden und Vorhersagemodelle zur Bestimmung von Viskosität, Dichte, Oberflächenspannung und Wärmeleitfähigkeit von Schlacken. Zur Beschreibung des Wärme‐ und Stofftransports in Schlackeschichten, die sich an Wänden von Hochtemperaturräumen ausbilden, wurde ein vereinfachtes stationäres Modell entwickelt. Das Modell ist geeignet, die Transporteigenschaften der Schlacke, lokale Schichtdicken der festen und flüssigen Schlacke, die gemittelte Fließgeschwindigkeit des schmelzflüssigen Schlackefilms sowie die radiale Temperaturverteilung in der Schlackeschicht und den Wärmeeintrag in das Kühlwasser vorherzusagen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. (2000) Lexikon der Physik. Spektrum, Akad. Verl, Heidelberg

    Google Scholar 

  2. Allibert M (Hrsg) (1995) Slag Atlas, 2nd Aufl. Verl. Stahleisen, Düsseldorf

    Google Scholar 

  3. Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Hack K et al (2009) FactSage thermochemical software and databases – recent developments. CALPHAD 33(2):295–311

    Article  Google Scholar 

  4. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy – theory, experiment and applications, Wiley-Interscience, Hoboken, NJ, ISBN 0-471-64749-7

    Google Scholar 

  5. Bartels M, Lin W, Nijenhuis J, Kapteijn F, van Ommen JR (2008) Agglomeration in fluidized beds at high temperatures: mechanisms, detection and prevention. Prog Energ Combust Sci 34(5):633–666

    Article  Google Scholar 

  6. Bronsch AM (2013) Comparison of calculated and measured thermophysical slag properties: viscosity and solid phases. International Conference on Coal Science & Technology Proceedings, Pennsylvania, USA

    Google Scholar 

  7. Browning GJ, Bryant GW, Hurst HJ et al (2003) An empirical method for the prediction of coal ash slag viscosity. Energ Fuel 17(3):731–737. https://doi.org/10.1021/ef020165o

    Article  Google Scholar 

  8. Chung FH, Smith DK (2000) Industrial applications of X-ray diffraction. Marcel Dekker, New York

    Google Scholar 

  9. Compo P, Pfeffer R, Tardos GI (1987) Minimum sintering temperatures and defluidization characteristics of fluidizable particles. Powder Technol 51(1):85–101

    Article  Google Scholar 

  10. Córdoba-Torres P, Mesquita TJ, Devos O, Tribollet B, Roche V, Nogueira RP (2012) On the intrinsic coupling between constant-phase element parameters α and Q in electrochemical impedance spectroscopy. Electrochim Acta 72:172–178

    Article  Google Scholar 

  11. Deutsches Institut für Normung e.V. DIN EN 14775 (2009) Feste Biobrennstoffe – Verfahren zur Bestimmung des Aschegehalts. Beuth Verlag, Berlin

    Google Scholar 

  12. Deutsches Institut für Normung e.V. DIN 51719 (1997) Prüfung fester Brennstoffe – Bestimmung des Aschegehalts. Beuth Verlag, Berlin

    Google Scholar 

  13. Deutsches Institut für Normung e.V. DIN 51729-10 (2011) Prüfung fester Brennstoffe – Bestimmung der chemischen Zusammensetzung von Brennstoffasche – Teil 10: Röntgenfluoreszenz-Analyse (RFA). Beuth Verlag, Berlin

    Google Scholar 

  14. Deutsches Institut für Normung e.V. DIN 51730 (2007) Prüfung fester Brennstoffe – Bestimmung des Asche-Schmelzverhaltens. Beuth Verlag, Berlin

    Google Scholar 

  15. Dingwell DB (1991) The density of titanium(IV) oxide liquid. J Am Ceram Soc 10:2718–2719

    Article  Google Scholar 

  16. Dobson DP, Jones AP, Rabe R et al (1996) In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth Planet Sc Lett 143 (1–4):207–215. https://doi.org/10.1016/0012-821X(96)00139-2

    Article  Google Scholar 

  17. Du Noüy PL (1925) An interfacial tensionmeter for universal use. J Gen Physiol 7(5):625–631. https://doi.org/10.1085/jgp.7.5.625

    Article  Google Scholar 

  18. Duchesne MA, Bronsch AM, Hughes RW, Masset PJ (2012) Slag viscosity modeling toolbox. Fuel 114:1–6. Advances in Coal Science and Technology, ICCS&T 2011

    Google Scholar 

  19. Duchesne MA, Ilyushechkin AY, Hughes RW et al (2012) Flow behaviour of slags from coal and petroleum coke blends. Fuel 97(0):321–328. https://doi.org/10.1016/j.fuel.2012.02.019

    Article  Google Scholar 

  20. Duchesne MA, Macchi A, Lu DY et al (2010) Artificial neural network model to predict slag viscosity over a broad range of temperatures and slag compositions. Gasification 91(8):831–836. https://doi.org/10.1016/j.fuproc.2009.10.013

    Article  Google Scholar 

  21. Einstein A (1906) Eine Neue Bestimmung der Moleküldimensionen. Ann Phys 324(2):289–306. https://doi.org/10.1002/andp.19063240204

    Article  MATH  Google Scholar 

  22. Einstein A (1911) Berichtigung zu meiner Arbeit: „Eine neue Bestimmung der Moleküldimensionen“. Ann Phys 339(3):591–592. https://doi.org/10.1002/andp.19113390313

    Article  MATH  Google Scholar 

  23. Fernandez Llorente MJ, Carrasco García JE (2005) Comparing methods for predicting the sintering of biomass ash in combustion. Fuel 84(14–15):1893–900

    Article  Google Scholar 

  24. Fukuyama H, Waseda Y (2009) High-temperature measurements of materials. Advances in Materials Research 11. Springer, Berlin

    Google Scholar 

  25. Fukuyama H (Hrsg) (2009) High-temperature measurements of materials. Advances in Materials Research. Springer, Berlin

    Google Scholar 

  26. Goldschmidt A, Streitberger H (2002) BASF-Handbuch Lackiertechnik, [Neuaufl.]. Vincentz, Hannover

    Google Scholar 

  27. Gräbner M (2014) Industrial coal gasification technologies covering basline and high-ash coal. John Wiley & Sons, Hoboken

    Google Scholar 

  28. Gupta SV (2014) Viscometry for liquids: calibration of viscometers. Springer Series in Materials Science, Bd. 194. Heidelberg

    Google Scholar 

  29. Higman C, Van de Burg M (2003) Gasification. Elsevier Science. Amsterdam

    Chapter  Google Scholar 

  30. Hoy H, Roberts A, Wilkins D (1964) Behavior of mineral matter in slagging gasification processes. Institute of Gas Engineers, London, S 672

    Google Scholar 

  31. Hupa M, Skrifvars BJ, Moilanen A (1989) Measuring the sintering tendency of ash by a laboratory method. J Inst Energy 62(452):131–137

    Google Scholar 

  32. Jain AK, Jianchang M, Mohiuddin KM (1996) Artificial neural networks: a tutorial. Computer 29(3):31–44

    Article  Google Scholar 

  33. Kalmanovitch D, Frank M (2003) An effective model of viscosity for ash deposition phenomena. Energy & Fuels 17: 731–737

    Article  Google Scholar 

  34. Klinger M, Reinmöller M, Schreiner M, Meyer B (2013) High temperature behavior of three reference ashes under different atmospheres: high temperature XRD vs. thermodynamic calculations. In: Mathews J, Wood E, Winton S (Hrsg) Proceedings of the International Conference on Coal Science and Technology, EMS energy Institute, Pennsylvania, S 378–387

    Google Scholar 

  35. Klinger M, Reinmöller M, Schreiner M, Meyer B (2014) Von der Aschechemie zur Werkstoffkorrosion bei der Vergasung fester Einsatzstoffe. Cit 86(10):1716–1725

    Google Scholar 

  36. Köhler K, Schuchmann P (2012) Emulgiertechnik: Grundlagen, Verfahren und Anwendungen. Behr’s Verlag, Hamburg

    Google Scholar 

  37. Lakatos T, Johansson LG, Simmingsköld B (1972) Viscosity temperature relations in the glass system SiO2-Al2O3-Na2O-K2O-CaO-MgO in the composition range of technical glasses. Glass Technol(13):88–95

    Google Scholar 

  38. Lange RA (1997) A revised model for the density and thermal expansivity of K2O-Na2O-CaO-MgO-Al2O3-SiO2 liquids from 700 to 1900 K: extension to crustal magmatic temperatures. Contrib Mineral Petrol 130(1):1–11. https://doi.org/10.1007/s004100050345

    Article  Google Scholar 

  39. Lange RA, Carmichael ISE (1987) Densities of Na2O-K2O-MgO-MgO-FeO-Fe2O3-Al2O3-TiO2- SiO2 liquids: new measurements and derived partial molar properties. Geochimica et Cosmochimica Acta 51(11):2931–2946. https://doi.org/10.1016/0016-7037(87)90368-1

    Article  Google Scholar 

  40. Lange RA, Carmichael ISE (1989) Ferric-ferrous equilibria in Na2O-FeO-Fe2O3-SiO2 melts: effects of analytical techniques on derived partial molar volumes. Geochimica et Cosmochimica Acta 53(9):2195–2204. https://doi.org/10.1016/0016-7037(89)90343-8

    Article  Google Scholar 

  41. Lepora N (2007) Molybdenum. The elements. Marshall Cavendish Benchmark, New York

    Google Scholar 

  42. Meireles MRG, Almeida PEM, Simoes MG (2003) A comprehensive review for industrial applicability of artificial neural networks. IEEE Trans Ind Electron 50(3):585–601. https://doi.org/10.1109/TIE.2003.812470

    Article  Google Scholar 

  43. Melchior T (2011) Untersuchungen zur Oberflächenspannung von Kohleschlacken unter Vergasungsbedingungen. Zentralbibliothek, Forschungszentrum Jülich

    Google Scholar 

  44. Mezger TG (2011) The rheology handbook: for users of rotational and oscillatory rheometers, 3rd Aufl. European Coatings Tech Files. Vincentz Network, Hannover, Germany

    Google Scholar 

  45. Mills KC, Rhine JM (1989) The measurement and estimation of the physical properties of slags formed during coal gasification: 2. Properties relevant to heat transfer. Fuel 68(7):904–910. https://doi.org/10.1016/0016-2361(89)90128-2

    Article  Google Scholar 

  46. Moore WJ, Paterno W (1990) Grundlagen der Physikalischen Chemie [Online-Ausg.]. de Gruyter, Berlin

    Book  Google Scholar 

  47. Muhammadieh M (2007) Beitrag zur Ermittlung des Ansatzbildungspotenzials von Braunkohlen in Dampferzeugern. Dissertation, TU Bergakademie, Freiberg

    Google Scholar 

  48. Muhmood L, Seetharaman S (2010) Density measurements of low silica CaO-SiO2-Al2O3 slags. Metall Materi Trans B 41(4):833–840. https://doi.org/10.1007/s11663-010-9385-1

    Article  Google Scholar 

  49. Nel MV, Strydom CA, Schobert HH, Beukes JP, Bunt JR (2011) Comparison of sintering and compressive strength tendencies of a model coal mineral mixture heat-treated in inert and oxidizing atmospheres. Fuel Process Technol 92(5):1042–1051

    Article  Google Scholar 

  50. Neuroth M, Schreck T, Simmat R, Nover G, Müller M, Muhammadieh M (2011) Untersuchungen zum Sinterverhalten von Kohleaschen bei der Braunkohlenverfeuerung. VGB PowerTech 11:83–89

    Google Scholar 

  51. Newton I (1723) Philosophiae Naturalis Principia Mathematica, Ed. ultima, Amstelaedami

    MATH  Google Scholar 

  52. Otto M (2006) Analytische Chemie, 3rd Aufl. Wiley-VCH, Weinheim

    Google Scholar 

  53. Quon DHH, Wang SSB, Chen TT (1985) Viscosity measurements of slags from western canadian coals. J Eng Gas Turb Power 107(3):803–806. https://doi.org/10.1115/1.3239803

    Article  Google Scholar 

  54. Rammler E, Lissner A, Koppe H, Thomas H Büren K, Knopfe E et al (1952) Salzhaltige Braunkohle I, Schriftenreihe des Verlages Technik, Bd. 42, Verlag Technik, Berlin

    Google Scholar 

  55. Rao MA (©2007) Rheology of fluid and semisolid foods: Principles and applications, 2. Aufl. Food Engineering Series. Springer, New York

    Book  Google Scholar 

  56. Reinmöller M, Klinger M, Schreiner M, Gutte H (2015) Relationship between ash fusion temperatures of ashes from hard coal, brown coal, and biomass and mineral phases under different atmospheres: a combined FactSage™ computational and network theoretical approach. Fuel 151:118–123. https://doi.org/10.1016/j.fuel.2015.01.036

    Article  Google Scholar 

  57. Riboud P, Roux Y, Lucas L. et al (1981) Improvement of continuous casting powders. Fachberichte Hüttenpraxis Metallweiterverarbeitung (19):859–869

    Google Scholar 

  58. Roberts JJ, Tyburczy JA (1991) Frequency dependent electrical properties of polycrystalline olivine compacts. J Geophys Res-Sol Ea 96(B10):16205–16222

    Google Scholar 

  59. Roscoe R (1952) The viscosity of suspensions of rigid spheres. British J Appl Sci Technol (3):267–269

    Google Scholar 

  60. Safronov D, Richter A, Nikrityuk P, Schmidt R, Bronsch A, Guhl S (2014) Subgrid model for slag behaviour at entrained flow gasifier walls. In: International Freiberg Conference on IGCC & XtL Technologies

    Google Scholar 

  61. Sato Y, Nishizuka T, Hara K, Yamamura T, Waseda, Y (2000) density measurement of molten silicon by a pycnometric method. Int J Thermophys 21(6):1463–1471

    Article  Google Scholar 

  62. Schimpke R, Krzack S, Bräutigam N, Meyer B (2014) Determination of coal ash sintering characteristics by compression strength test at different atmospheres. 31th Pittsburgh Coal Conference, Pittsburgh, USA

    Google Scholar 

  63. Schlüter A (2008) Untersuchungen zum Verschmutzungsverhalten rheinischer Braunkohlen in Kohledampferzeugern. Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen

    Google Scholar 

  64. Scholze H (1988) Glas: Natur Struktur u. Eigenschaften, 3. Aufl. Springer, Berlin

    Book  Google Scholar 

  65. Shackley MS (2011) X-ray fluorescence spectrometry (XRF) in geoarchaeology. Springer Science+Business Media, LLC, New York, NY

    Book  Google Scholar 

  66. Shaw H (1972) Viscosities of magmatic silicate liquids; an empirical method of prediction. Am J Sci (272):870–893

    Article  Google Scholar 

  67. Skrifvars BJ, Hupa M, Hiltunen M (1992) Sintering of ash during fluidized bed combustion. Ind Eng Chem Res 31(4):1026–1030

    Article  Google Scholar 

  68. Skrifvars BJ, Öhman M, Nordin A, Hupa M (1999) Predicting bed agglomeration tendencies for biomass fuels fired in fbc boilers: a comparison of three different prediction methods. Energ Fuel 13(2):359–363

    Article  Google Scholar 

  69. Slankamenac M, Ivetic T, Nikolic MV, Ivetic N, Zivanov M, Pavlovic VB (2010) Impedance response and dielectric relaxation in liquid-phase sintered Zn2SnO4-SnO2 ceramics. J Electron Mater 39(4):447–455

    Article  Google Scholar 

  70. Song W, Sun Y, Wu Y et al (2011) Measurement and simulation of flow properties of coal ash slag in coal gasification. AIChE J 57(3):801–818. https://doi.org/10.1002/aic.12293

    Article  Google Scholar 

  71. Streeter RC, Diehl EK, Schobert HH (1984) Measurement and prediciton of low-rank coal slag viscosity. Am Chem Soc 264: 195–209. https://10.1021/bk-1984-0264.ch012

  72. Strunz H, Nickel EH (2001) Strunz mineralogical tables. Chemical-structural mineral classification system, 9. Aufl. Schweizerbart, Stuttgart

    Google Scholar 

  73. Urbain G, Cambier F, Deletter M et al (1981) Viscosity of silicate melts. J Br Ceram Soc (80):139–141

    Google Scholar 

  74. Van Dyk JC, Keyser MJ (2014) Influence of discard mineral matter on slag-liquid formation and ash melting properties of coal – a FACTSAGE™ simulation study. Fuel 116:834–840

    Article  Google Scholar 

  75. Vargaftik NB, Volkov BN, Voljak LD (1983) International tables of the surface tension of water. Reprint No. 231 from Journal of Physical and Chemical Reference Data. American Chemical Society and The American Institute of Physics for the National Bureau Of Standards, New York, Washington, D.C.

    Book  Google Scholar 

  76. Vargas S, Frandsen FJ, Dam-Johansen K (2000) Rheological properties of high-temperature melts of coal ashes and other silicates. Prog Energ Combust 27(3):237–429

    Article  Google Scholar 

  77. Vargas S, Frandsen FJ, Dam-Johansen K (2001) Rheological properties of high-temperature melts of coal ashes and other silicates. Prog in Energ Combus Sci 27(3): 237–429. https://doi.org/10.1016/S0360-1285(00)00023-X

    Article  Google Scholar 

  78. Washburn EW, Libman EE, Shelton GR (1924) The viscosities and surface tensions of the soda-lime-silica glasses at high temperatures. http://hdl.handle.net/2142/4487. Zugegriffen: 17. Nov. 2014

  79. Watt J, Fereday F (1969) Flow properties of slags formed from ashes of british coals: Part 1. Viscosity of homogeneous liquid slags in relation to slag composition. Inst Fuel (42):99–103

    Google Scholar 

  80. Wright S, Zhang L, Sun S et al (2000) Viscosity of a CaO-MgO-Al2O3-SiO2 melt containing spinel particles at 1646K. Metall Materi Trans B 31 (1):97–104. https://doi.org/10.1007/s11663-000-0134-8

    Article  Google Scholar 

  81. Zelkowski J (2004) Kohlecharakterisierung und Kohleverbrennung, 2. Aufl. VGB PowerTech, Essen

    Google Scholar 

  82. Zevenhoven-Onderwater M, Backman R, Skrifvars BJ, Hupa M (2001) The ash chemistry in fluidised bed gasification of biomass fuels. Part I: Predicting the chemistry of melting ashes and ash-bed material interaction. Fuel 80:1489–1502

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mathias Klinger or Dmitry Safronov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klinger, M. et al. (2018). Mineralstoffverhalten. In: Krzack, S., Gutte, H., Meyer, B. (eds) Stoffliche Nutzung von Braunkohle. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46251-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46251-5_21

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46250-8

  • Online ISBN: 978-3-662-46251-5

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics