Skip to main content

Vergasung

  • Chapter
  • First Online:
Book cover Stoffliche Nutzung von Braunkohle

Zusammenfassung

Die Vergasung ist als thermochemischer Konversionsprozess sehr komplex. Neben chemischen Reaktionen, die endotherm und exotherm, homogen und heterogen sein können, sind Stoff‐ und Wämetransportvorgäge entscheidend fü den Vergasungsfortschritt. Die heterogenen Reaktionen zur Umsetzung des Kokses spielen dabei eine besondere Rolle, da sie relativ langsam ablaufen. Ausgehend von der Vorstellung grundlegender Vergasungsmodelle und der experimentellen Ermittlung reaktionskinetischer Parameter werden Zusammenhäge zwischen Porenstrukturveränderungen wärend der Koksvergasung und der Reaktionskinetik betrachtet. Ein weiterer behandelter Aspekt ist die experimentelle Untersuchung der Co‐Vergasung von biogenen Energierohstoffen mit Braunkohlen sowie des Vergasungsverhaltens von Zwischenprodukten einer thermochemischen Veredlungskette, in vorliegenden Fall von Koks aus der katalytischen Pyrolyse. Abschließend wird ein fortschrittliches kinetisches Modell zur Beschreibung der Koksumsetzung vorgestellt und Möglichkeiten zur Kopplung dieses Modells mit CFD-Anwendungen präsentiert. Mittels numerischen Untersuchungen wird der Einfluss von Wärme‐ und Stofftransportprozessen in der Grenzschicht und den Partikelporen bzw. die Wechselwirkungen zwischen Gasströmung und reaktivem Partikel analysiert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1 Der Fehler bezüglich der Reaktionsgeschwindigkeit r‘‘(U=0,5) beträgt ± 1,57E-04 1/s

  2. 2.

    2 Der Fehler bezüglich dem Reaktivitätsindex RS0,5 beträgt ± 0,18 1/h (Die aufgeführten Fehler wurden anhand von 10 Wiederholungsmessungen in der METTLER-TGA ermittelt)

  3. 3.

    3 Für die folgenden Betrachtungen werden für die Standard- bzw. Vergleichsprobe A Mittelwerte aus den Proben A.1 und A.2 (WDH) verwendet

  4. 4.

    4 Das Verhältnis zwischen SiO2 und Al2O3 wird allgemein als Modul bezeichnet [47]

Literatur

  1. Aarna I, Suuberg EM (1998) Changes in reactive surface area and porosity during char oxydation. Twenty-Seventh Symposium (International) on Combustion, S 2933–2939

    Google Scholar 

  2. Adschiri T, Furuswa T (1986) Relation between CO2-reactivity of coal char and bet surface area. Fuel 65:1688–1693

    Article  Google Scholar 

  3. Ahn D et al (2001) Gasification kinetics of an Indonesian sub-bituminous coal-char with CO2 at elevated pressure. Fuel 80(11):1651–1658

    Article  Google Scholar 

  4. ANSYS Fluenttm (2010) Kommerzieller Strömungslöser. ANSYS, Inc., Canonsburg, PA

    Google Scholar 

  5. ANSYS Fluenttm 14 (2011) Fluent 14. Theory guide. ANSYS, Inc., Canonsburg

    Google Scholar 

  6. Aris R (1975) The mathematical theory of diffusion and reaction in permeable catalysts: the theory of the steady state. Oxford University Press, Oxford

    MATH  Google Scholar 

  7. ASTM D6556-01 (2001) Standard test method for carbon black – total and external surface area by nitrogen adsorption. ASTM International, West Conshohocken, PA

    Google Scholar 

  8. Bayarsaikhan B, Sonoyama N, Hosokai S et al (2006) Inhibition of steam gasification of char by volatiles in a fluidized bed under continuous feeding of a brown coal. Fuel 85:340–349

    Article  Google Scholar 

  9. Benfell KE (2001) Assessment of char morphology in high pressure pyrolysis and combustion. Dissertation, University of Newcastle, Australian

    Google Scholar 

  10. Bhatia SK, Perlmutter DD (1980) A random pore model for fluid-solid reactions: I. Isothermal, kinetic control. AIChE J 26(3):379–386. https://doi.org/10.1002/aic.690260308

    Article  Google Scholar 

  11. Bhatia SK, Perlmutter DD (1981) A random pore model for fluid-solid reactions: II. Diffusion and transport effects. AIChE J 27(2):247–254. https://doi.org/10.1002/aic.690270211

    Article  Google Scholar 

  12. Bird RB, Stewart WR, Lightfood EN (1960) Transport phenomena. John Wiley & Sons, Inc., New York

    Google Scholar 

  13. Bird RB, Stewart WE, Lightfoot EN (2007) Transport phenomena, 2. Aufl. John Wiley & Sons, Inc., New York

    Google Scholar 

  14. Bischoff KB (1965) Effectiveness factors for general reaction rate forms. AIChE J 11(2):351–355.https://doi.org/10.1002/aic.690110229

    Article  Google Scholar 

  15. Boblenz K et al (2014) Anpassungsbedarf bei der Co-Vergasung von Biomasse und Reststoffen mit Kohle unter Berücksichtigung brennstoffspezifischer Vorketten. In: Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e.V. (Hrsg) Beiträge zur DGMK-Fachbereichstagung Konversion von Biomassen (Rotenburg a.d. Fulda 12.–14. Mai 2014). Rotenburg a.d. Fulda, S 153–162,ISBN 978-3-941721-43-2

    Google Scholar 

  16. Busca G (2014) Zeolites and other structurally microporous solids as acid–base materials. In: Heterogeneous catalytic materials: solid state chemistry, surface chemistry and catalytic behaviour. Elsevier, Amsterdam, S 197–249

    Chapter  Google Scholar 

  17. Carberry JJ (1962) The micro-macro effectiveness factor for the reversible catalytic reaction. AIChE J 8(4):557–558. https://doi.org/10.1002/aic.690080428

    Article  Google Scholar 

  18. Dialer K, Onken U, Leschonski K (1986) Grundzüge der Verfahrenstechnik und Reaktionstechnik. Carl Hanser Verlag, München Wien

    Google Scholar 

  19. DMT-Gesellschaft für Forschung und Prüfung (1993) Bedienungsanleitung DMT-Drehrohrapparatur. Institut für Kokserzeugung u. Brennstofftechnik (Hrsg), Essen

    Google Scholar 

  20. DMT-Gesellschaft für Forschung und Prüfung mbH (1997) Einführung in den Betrieb von Thermowaagen. Firmenschrift, Essen

    Google Scholar 

  21. Dutta S, Wen CY, Belt RJ (1977) Reactivity of coal and char. 1. In carbon dioxide atmosphere. Ind Eng Chem Process Des Dev 16(1):20–30. https://doi.org/10.1021/i260061a004

    Article  Google Scholar 

  22. Everson RC, Neomagus HW, Kasaini H, Njapha D (2006) Reaction kinetics of pulverized coal-chars derived from inertinite-rich coal discards: gasification with carbon dioxide and steam. Fuel 85(7–8):1076–1082. https://doi.org/10.1016/j.fuel.2005.10.016

    Article  Google Scholar 

  23. Everson RC, Neomagus HW, Kaitano R, Falcon R (2008) Properties of high ash coal-char particles derived from inertinite-rich coal: II. Gasification kinetics with carbon dioxide. Fuel 87 (15–16):3403–3408

    Google Scholar 

  24. Fan D, Zhu Z, Na Y, Lu Q (2013) Thermogravimetric analysis of gasification reactivity of coal chars with steam and CO2 at moderate temperatures.J Therm Anal Calorim 113:599–607

    Article  Google Scholar 

  25. Fegley Jr B (2013) Practical chemical thermodynamics for geoscientists. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-251100-4.00007-9

    Book  Google Scholar 

  26. Feng B, Bhatia SK (2003) Variation of the pore structure of coal chars during gasification. Carbon 41:507–523

    Article  Google Scholar 

  27. Field MA, Roberts RA (1967) Measurement of the ratio of reaction of carbon particles with oxygen in the pulverized coal size range for gas temperature between 1400 K and 1800 K. BCURA Memb Circ No 325

    Google Scholar 

  28. Frank-Kamenetskii DA (1969) Diffusion and heat transfer in chemical kinetics. Plenum Press, New York

    Google Scholar 

  29. Giberson RC, Walker JP (1966) Reaction of nuclear graphite with water vapor. Part I. Effect of hydrogen and water vapor partial pressures. Carbon 3:521–525

    Google Scholar 

  30. Gil MV, Fermoso J, Pevida C, Pis J, Rubiera F (2010) Intrinsic char reactivity of plastic waste (PET) during CO2 gasification. Fuel Process Technol 91:1776–1781

    Article  Google Scholar 

  31. Gómez-Barea A, Leckner B (2010) Modelling of biomass gasification in fluidized bed. Prog Energ Combust 36:444–509

    Article  Google Scholar 

  32. Gottfried HC, Riedel G, Trawiel P (2003) Praxis der Thermischen Analyse von Kunststoffen. Hanser, München

    Google Scholar 

  33. Gräbner M (2015) Industrial coal gasification technologies covering baseline and high-ash coal. Wiley, Weinheim, ISBN 978-3-527-33690-6

    Google Scholar 

  34. Gray D, Cogoli JG, Essenhigh RH (1974) Problems in pulverized coal and char combustion. In: Massey LG (Hrsg) Coal gasification. American Chemical Society, Washington, S 72–91. https://doi.org/10.1021/ba-1974-0131.ch006

    Chapter  Google Scholar 

  35. Grigore M et al (2006) Influence of mineral matter on coke reactivity with carbon. ISIJ Int 46(4):503–512

    Article  Google Scholar 

  36. Hagen J (1996) Technische Katalyse: Eine Einführung. Wiley-VCH, Weinheim

    Book  Google Scholar 

  37. Hampartsoumian E, Pourkashanian M, Williams A (1989) Combustion rates of chars and carbonaceous residues. J Inst Energy 62(450):48–56

    Google Scholar 

  38. Hattingh BB et al (2011) Assessing the catalytic effect of coal ash constituents on the CO2 gasification rate of high ash, South African coal. Fuel Process Technol 92(10):2048–2054

    Article  Google Scholar 

  39. Hemminger WF, Cammenga HK (2014) Methoden der Thermischen Analyse. Springer, Berlin, ISBN 3-540-15049-8

    Google Scholar 

  40. Hertwig K, Martens L (2012) Chemische Verfahrenstechnik: Berechnung, Auslegung und Betrieb chemischer Reaktoren. Oldenbourg Verlag, München

    Book  Google Scholar 

  41. Higman C, Burgt M (2003) Gasification. Elsevier, Amsterdam

    Google Scholar 

  42. Hong J (2000) Modeling char oxidation as a function of pressure using an intrinsic Langmuir rate equation. Dissertation, Brigham Young University, USA

    Google Scholar 

  43. Huang Z, Zhang J, Zhao Y, Zhang H, Yue G, Suda T,Narukawa M (2010) Kinetic studies of char gasification by steam and CO2 in the presence of H2 and CO. Fuel Process Technol 91(8):843–847. https://doi.org/10.1016/j.fuproc.2009.12.020

    Article  Google Scholar 

  44. Huo W et al (2014) Study on CO2 gasification reactivity and physical characteristics of biomass, petroleum coke and coal chars. Bioresource Technol 159:143–149

    Article  Google Scholar 

  45. Hurt RH, Calo JM (2001) Semi-global intrinsic kinetics for char combustion modeling. Combust Flame 125(3):1138–1149. https://doi.org/10.1016/s0010-2180(01)00234-6

    Article  Google Scholar 

  46. Hurt RH, Sun J-K, Lunden MM (1998) A kinetic model of carbon burnout in pulverized coal combustion. Combust Flame 113:181–197. https://doi.org/10.1016/s0010-2180(97)00240-x

    Article  Google Scholar 

  47. Hüttinger KJ (1988) Mechanism of water vapor gasification at high hydrogen levels. Carbon 26:79–87

    Article  Google Scholar 

  48. Innovative Braunkohlenintegration in Mitteldeutschland (2013) From Mining to Refining – Innovative Konzepte zur stofflichen Nutzung der Braunkohle. Innovative Braunkohlenintegration in Mitteldeutschland (ibi), Freiberg

    Google Scholar 

  49. Irfan M, Usman M, Kusakabe K (2011) Coal gasification in CO2 atmosphere and its kinetics since 1948: a brief review. Energy 36(1):12–40

    Article  Google Scholar 

  50. Jiang H, Radovic LR (1989) Transient kinetics studies of char gasification in carbon dioxide. The Pennsylvania State University, Pennsylvania

    Google Scholar 

  51. Jing X et al (2013) Evaluation of CO2 gasification reactivity of different coal rank chars by physicochemical properties. Energy Fuels 27:7287–7293

    Article  Google Scholar 

  52. Jing X, Wang Z, Yu Z, Zhang Q, Li C, Fang Y (2013) Experimental and kinetic investigation of CO2 gasification of fine chars separated from a pilot-scale fluidized-bed gasifier. Energy Fuels 27:2422–2430

    Article  Google Scholar 

  53. Jolyon R, Ida C (2014) Steatite. mindat. http://www.mindat.org/min-3755.html. Zugegriffen: Aug. 2014

  54. Jung H et al (2014) Rückstandsumfrage 2013. Wochenblatt für Papierfabrikation 10:628–630

    Google Scholar 

  55. Jung H et al (2015) Wasser- und Rückstandsumfrage in der deutschen Papier- und Zellstoffindustrie. Aktuelle Papier-Rundschau 1:26–27

    Google Scholar 

  56. Jüntgen H, van Heek KH (1981) Kohlevergasung. Verlag Karl Thiemig, München, ISBN 978-3-521-06136-1

    Google Scholar 

  57. Kajitani S et al (2006) CO2 gasification rate analysis of coal char in entrained flow coal gasifier. Fuel 85(2):163–169

    Article  MathSciNet  Google Scholar 

  58. Kaltschmitt M, Hartmann H, Hofbauer H (2009) Energie aus Biomasse: Grundlagen, Techniken und Verfahren. Springer, Berlin

    Book  Google Scholar 

  59. Kazakov A, Frenklach M (1994) Reduced Reaction Sets based on GRI-MECH 1.2. http://www.me.berkeley.edu/drm/. Zugegriffen: 23. Nov. 2016

  60. Kestel M (2016) Numerical modeling of moving carbonaceous particle conversion in hot environments. Dissertation. TU Bergakademie Freiberg

    Google Scholar 

  61. Kestel M, Friese D, Richter A (2014) Numerical simulations of reacting porous char particles under gasification conditions. International Pittsburgh Coal Conference, Pittsburgh, USA

    Google Scholar 

  62. Külaots I, Aarna I, Callejo M, Hurt RH, Suuberg EM (2002) Development of porosity during coal char combustion. Proc Comb Inst 29:495–501

    Article  Google Scholar 

  63. Libby PA, Blake TR (1981) Burning carbon particles in the presence of water vapor. Combust Flame 41:123–147. https://doi.org/10.1016/0010-2180(81)90047-X

    Article  Google Scholar 

  64. Lindemann W, Wögerbauer R (1974) Gitterkonstanten und Raumgruppe für Protoenstatit (MgSiO3). Naturwissenschaften 61(11):500. https://doi.org/10.1007/BF00622966

  65. Liu G-S, Niksa S (2004) Coal conversion submodels for design applications at elevated pressures. Part II: Char gasification. Prog Energ Combust 30(6):679–717. https://doi.org/10.1016/j.pecs.2004.08.001

    Article  Google Scholar 

  66. Liu G-S, Benyon P, Benfell KE, Bryant GW, Tate AG, Boyd RK, Harris DJ, Wall TF (2000) The porous structure of bituminous coal chars and its influence on combustion and gasification under chemically controlled conditions. Fuel 79:617–626

    Article  Google Scholar 

  67. Liu G-S, Rezaei HR, Lucas JA, Harris DJ, Wall TF, Wall TF (2000) Modelling of a pressurised entrained flow coal gasifier: the effect of reaction kinetics and char structure. Fuel 79:1767–1779

    Article  Google Scholar 

  68. Liu T, Fang Y, Wang Y (2008) An experimental investigation into the gasification reactivity of chars prepared at high temperatures. Fuel 87:460–466

    Article  Google Scholar 

  69. Lorenz H, Carrea E, Tamura M, Haas J (2000) The role of char surface structure development in pulverized fuel combustion. Fuel 79:1161–1172

    Article  Google Scholar 

  70. Lu GQ, Do DD (1993) Comparison of structural models for high-ash char gasification. Carbon 32:247–263

    Article  Google Scholar 

  71. Malekshahian M, Hill JM (2011) Kinetic analysis of CO2 gasification of petroleum coke at high pressures. Energy Fuels 25:4043–4048

    Article  Google Scholar 

  72. McBride BJ, Gordon S, Reno MA (1993) Coefficients for calculating thermodynamic and transport properties of individual species. NASA Technical Memorandum 4513. NASA. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19940013151.pdf. Zugegriffen: 11. Nov. 2016

  73. Mettler-Toledo (2007) Bedienungsanleitung zum TGA/DSC 1. Mettler-Toledo, Schwerzenbach

    Google Scholar 

  74. Meyer B, Pardemann R, Heschel W (2009) Innovative stoffgeführte Veredlungsketten und Technologien für eine wirtschaftliche sowie umweltgerechte Produktion von chemischen Basisprodukten aus mitteldeutscher Braunkohle. In: ibi Fachsymposium, Freiberg

    Google Scholar 

  75. Micco De G, Nasjleti A, Bohe AE (2012) Kinetics of the gasification of rio turbio coal under different pyrolysis temperatures. Fuel 95:531–543

    Google Scholar 

  76. Mitchell RE, Hurt RH, Baxter LL, Hardesty DR (1992) Compilation of Sandia coal char combustion data and kinetic analyses. Milestone report. Sandia National Laboratories. http://www.osti.gov/scitech/servlets/purl/7045508/. Zugegriffen: 11. Nov. 2016. https://doi.org/10.2172/7045508

  77. Nikrityuk PA, Schulze S, Kestel M, Safronov D (2012) Novel subgrid model for calculation of a char particle gasification. International Pittsburgh Coal Conference, Pittsburgh

    Google Scholar 

  78. Nikrityuk PA, Gräbner M, Kestel M, Meyer B (2013) Numerical study of the influence of heterogeneous kinetics on the carbon consumption by oxidation of a single coal particle. Fuel 114:88–98. https://doi.org/10.1016/j.fuel.2012.10.037

    Article  Google Scholar 

  79. Niksa S (2008) PC Coal Lab Version 4.1. User Guide and Tutorial. Niksa Energy Associates LLC, California

    Google Scholar 

  80. Niksa S, Liu G-S, Hurt RH (2003) Coal conversion submodels for design applications at elevated pressures Part I: devolatilization and char oxidation. Prog Energ Combust 29(5):425–477. https://doi.org/10.1016/s0360-1285(03)00033-9

    Article  Google Scholar 

  81. Ochoa J, Cassanello M, Bonelli P, Cukierman A (2001) CO2 gasification of Argentinean coal chars: a kinetic characterization. Fuel Process Technol 74(3):161–176

    Article  Google Scholar 

  82. Pusz S, Krzesinska M, Smedowski L, Majewska J, Pilawa B, Kwiecinska B (2010) Changes in coke structure due to reaction with carbon dioxide. Coal Geology 81:287–292

    Article  Google Scholar 

  83. Ranz WE, Marshall WR Jr (1952) Evaporation from drops. Part I. Chem Eng Prog 48(4):141–146

    Google Scholar 

  84. Ranz WE, Marshall WR Jr (1952) Evaporation from drops. Part II. Chem Eng Prog 48(4):173–180

    Google Scholar 

  85. Reade WC (1996) An improved method for predicting high-temperature char oxidation rates. Masterarbeit, Brigham Young University, USA

    Google Scholar 

  86. Richter A, Nikrityuk PA, Kestel M (2013) Numerical investigation of a chemically reacting carbon particle moving in a hot O2/CO2 atmosphere. Ind Eng Chem Res 52(16):5815–5824. https://doi.org/10.1021/ie302770j

    Article  Google Scholar 

  87. Richter A, Nikrityuk PA, Meyer B (2014) Three-dimensional calculation of a chemically reacting porous particle moving in a hot O2/CO2 atmosphere. Int J Heat Mass Tran 83:244–258. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.090

    Article  Google Scholar 

  88. Riedel E (2010) Nichtmetalle. In: Allgemeine und Anorganische Chemie. De Gruyter, Berlin, S 245–294

    Google Scholar 

  89. Roberts DG, Harris DJ (2007) Char gasification in mixtures of CO2 and H2O: competition and inhibition. Fuel 86(17–18):2672–2678. https://doi.org/10.1016/j.fuel.2007.03.019

    Article  Google Scholar 

  90. Russell NV, Gibbins JR, Man CK, Williamson J (2000) Coal char thermal deactivation under pulverized fuel combustion conditions. Energy Fuel 14(4):883–888. https://doi.org/10.1021/ef990241w

    Article  Google Scholar 

  91. Sadhukhan AK, Gupta P, Saha RK (2009) Characterization of porous structure of coal char from a single devolatilized coal particle: coal combustion in a fluidized bed. Fuel Process Technol 90:692–700

    Article  Google Scholar 

  92. Safronov D, Kestel M, Nikrityuk PA, Meyer B (2014) Particle resolved simulations of carbon oxidation in laminar flow. Can J Chem Eng 92(10):1669–1686. https://doi.org/10.1002/cjce.22017

    Article  Google Scholar 

  93. Scala F (2013) Fluidized-bed technologies for near-zero emission combustion and gasification. Woodhead Publishing Limited, Philadelphia

    Book  Google Scholar 

  94. Schindler V (1997) Kraftstoffe für morgen – Eine Analyse von Zusammenhängen und Handlungsoptionen. Springer, Berlin

    Book  Google Scholar 

  95. Schmalfeld J (2008) Die Veredlung und Umwandlung von Kohlen – Technologien und Projekte 1970–2000 in Deutschland. Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e.V., Hamburg, S 165–166, 299–306, ISBN 978-3-936418-88-0

    Google Scholar 

  96. Schulze S, Nikrityuk PA (2013) Advanced intrinsic subgrid model for a char particle moving in a hot CO2-gas. International Conference Coal Schience and Technology – ICCS & T, Pennsylvania

    Google Scholar 

  97. Schulze S, Kestel M, Safronov D, Nikrityuk PA (2011) Subgrid model for partial oxidation of a spherical coal particle moving in air-steam atmosphere. 1st ERCOFTAC Conference on Simulation of Multiphase Flows in Gasification and Combustion, Dresden

    Google Scholar 

  98. Schulze S, Kestel M, Nikrityuk PA, Safronov D (2013) From detailed description of chemical reacting carbon particles to subgrid models for CFD. Oil Gas Sci Technol 68:1007–1026

    Article  Google Scholar 

  99. Schwister K (2010) Taschenbuch der Verfahrenstechnik. Carl Hanser Verlag, München

    Google Scholar 

  100. Seitz M et al (2014) Influence of catalysts on the pyrolysis of lignites. Fuel 134:669–676

    Article  Google Scholar 

  101. Sekine Y et al (2006) Reactivity and structural change of coal char during steam gasification. Fuel 85:122–126

    Article  Google Scholar 

  102. Senneca O, Salantin P, Masi S (1998) Microstructural changes and loss of gasification reactivity of chars upon heat treatment. Fuel 77:1483–1493

    Article  Google Scholar 

  103. Shell International BV (2008) Shell energy scenarios to 2050. VMS The Hague, Netherlands

    Google Scholar 

  104. Shurtz RC (2011) Effects of pressure on the properties of coal char under gasification conditions at high initial heating rates. Dissertation, Brigham Young University, USA

    Google Scholar 

  105. Smoot LD, Smith PJ (1985) Coal combustion and gasification. Springer, New York

    Book  Google Scholar 

  106. Sommer J, Trumpf R, Haas A (2009) Reststoffverwertung in der Papierindustrie am Beispiel des Heizkraftwerkes Wörth der Papierfabrik Palm. In: Thomé-Kozmiensky KJ, Beckmann M (Hrsg) Energie aus Abfall. TK-Verlag, Neuruppin, S 155–183

    Google Scholar 

  107. Sun J-K, Hurt RH (2000) Mechanisms of extinction and near-extinction in pulverized solid fuel combustion. Proc Combust Inst 28(2):2205–2213. https://doi.org/10.1016/S0082-0784(00)80630-X

    Article  Google Scholar 

  108. Suuberg EM (1991) Thermally induced changes in reactivity of carbons. In: Lahaye J, Ehrburger P (Hrsg) Fundamental issues in control of carbon gasification reactivity. Springer, Dordrecht, S 269–305. https://doi.org/10.1007/978-94-011-3310-4_15

    Chapter  Google Scholar 

  109. Szekely J, Evans JW (1971) A structural model for gas-solid reactions with a moving boundary-II: the effect of grain size, porosity and temperature on the reaction of porous pellets. Chem Eng Sci 26:1901–1913

    Article  Google Scholar 

  110. Takarada T, Tamai Y, Tomita A (1985) Reactivities of 34 coals under steam gasification. Fuel 64(10):1438–1442

    Article  Google Scholar 

  111. Thiele EW (1939) Relation between catalytic activity and size of particle. Ind Eng Chem 31(7):916–920.https://doi.org/10.1021/ie50355a027

    Article  Google Scholar 

  112. Tomaszewicz M, Labojko G, Tomaszewicz G, Kotyczka-Moranska M (2013) The kinetics of CO2 gasification of coal chars. J Therm Anal Calorim 113:1327–1335

    Article  Google Scholar 

  113. Turns SR (2012) An introduction to combustion: concepts and applications. McGraw-Hill, New York

    Google Scholar 

  114. Ullmann M (2012) Development of a multi-physics tool for the simulation of chemical and physical processes in three-way catalysts. Masterarbeit, TU Bergakademie Freiberg

    Google Scholar 

  115. Vascellari M, Arora R, Hasse C (2014) Simulation of entrained flow gasification with advanced coal conversion submodels. Part 2: Char conversion. Fuel 118:369–384. https://doi.org/10.1016/j.fuel.2013.11.004

    Article  Google Scholar 

  116. Vogel GH (2004) Lehrbuch chemische Technologie – Grundlagen verfahrenstechnischer Anlagen. Wiley-VCH, Weinheim

    Google Scholar 

  117. Walker PL Jr, Rusinko F Jr, Austin LG (1959) Gas reactions of carbon. In: Eley DD, Selwood PW, Weisz PB (Hrsg) Advances in catalysis. Acedemic Press, S 133–221. https://doi.org/10.1016/S0360-0564(08)60418-6

    Chapter  Google Scholar 

  118. Wang M, Roberts DG, Kochanek MA, Harris DJ, Chang L, Li C (2014) Raman spectroscopic investigations into links between intrinsic reactivity and char chemical structure. Energy Fuels 28:285–290

    Article  Google Scholar 

  119. Webb AP, Orr C (1997) Analytical methods in fine particle technology. Micromeretics, Norcross

    Google Scholar 

  120. Weissermel K, Arpe HJ (1998) Industrielle organische Chemie – Bedeutende Vor- und Zwischenprodukte. Wiley-VCH, Weinheim

    Google Scholar 

  121. Wen WY (1980) Mechanisms of alkali metal catalysis in the gasification of coal, char, or graphite. Cataly Rev 22(1):1–28. https://doi.org/10.1080/03602458008066528

    Article  Google Scholar 

  122. Wheeler A (1951) Reaction rates and selectivity in catalyst pores. In: Frankenburg WG, Komarewsky VI, Rideal EK, Emmett PH, Taylor HS (Hrsg) Advances in catalysis. Elsevier, S 249–327. https://doi.org/10.1016/S0360-0564(08)60109-1

    Google Scholar 

  123. Wood BJ, Sancier KM (1984) The mechanism of the catalytic gasification of coal char: a critical review. Cataly Rev 26(2):233–279. https://doi.org/10.1080/01614948408078065

    Article  Google Scholar 

  124. Wortoff RH (2001) Chemische Verfahrenstechnik: Prozess und Reaktionstechnik. Shaker Verlag, Aachen

    Google Scholar 

  125. Xu K, Hu S, Su S, Xu C, Sun L, Shuai C, Jiang L, Xiang J (2013) Study on char surface active sites and their relationship to gasification reactivity. Energy Fuels 27:118–125

    Article  Google Scholar 

  126. Yan Q, Huang J, Zhao J, Li C, Xia L, Fang Y (2013) Investigation into the kinetics of pressurized steam gasification of chars with different coal ranks. J Therm Anal Calorim 116:519–527

    Article  Google Scholar 

  127. Ye DP et al (1998) Gasification of a South Australian low-rank coal with carbon dioxide and steam: kinetics and reactivity studies. Fuel 77(11):1209–1219

    Article  Google Scholar 

  128. Yu Y, Xu M, Yao H, Yu D, Qiao Y, Sui J, Liu X, Cao Q (2007) Char characteristics and patriculate matter formation during Chinese bituminous coal combustion. Proc Combus Inst 31:1947–1954

    Article  Google Scholar 

  129. Zhang JL, Wang GW, Shao JG, et al (2014) A modified random pore model for the kinetics of char gasification. BioRessources 9:3497–3507

    Google Scholar 

  130. Zhao H, Cao Y, Orndorff W (2014) Gasification characterisation of coal char under CO2 atmosphere. J Therm Anal Calorim 116:1267–1272

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Hasse or Andreas Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rußig, S. et al. (2018). Vergasung. In: Krzack, S., Gutte, H., Meyer, B. (eds) Stoffliche Nutzung von Braunkohle. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46251-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46251-5_20

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46250-8

  • Online ISBN: 978-3-662-46251-5

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics