Skip to main content

Partikelverhalten

  • Chapter
  • First Online:
  • 2419 Accesses

Zusammenfassung

Die Größe von Kohlepartikeln und deren prozessbedingte Veränderung z. B. durch Partikelzerfall haben bei der thermochemischen Konversion direkten Einfluss auf Parameter wie Aufheizgeschwindigkeit, Verweilzeit und Reaktionsgeschwindigkeit. In einem ersten Beitrag wird die Primärfragmentierung von Kohlepartikeln durch Hochtemperatureinwirkung in drei Versuchsanlagen untersucht. Dabei zeigt sich, dass der Inkohlungsgrad den größten Einfluss auf das Partikelzerfallsverhalten hat. In einem zweiten Beitrag wird der thermisch induzierte Partikelzerfall modelliert und durch numerische Simulation von Temperatur‐ und Spannungsprofilen in Kohlepartikeln während der Aufheizung dargestellt. Am Beispiel eines Hochdruck‐ Fallrohrreaktors werden in einem dritten Beitrag die verfahrenstechnischen und rohstofflichen Einflussgrößen auf die Partikel‐ und Gasverweilzeit bei der Konversion durch Pyrolyse aufgezeigt und diskutiert.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    SPaltor, siehe Jan Friedemann Abschn. 18.1

  2. 2.

    In der Skizze symbolisch als Federn dargestellt

Literatur

  1. Allen T (1997) Particle size measurement. Chapman & Hall, London, New York

    Google Scholar 

  2. Austin AE, Hedden WA (1954) Graphitization processes in cokes and carbon black. Ind Eng Chem 46:1520–1524

    Article  Google Scholar 

  3. Behrendt F, Pardemann R, Meyer B (2011) Stand und Perspektiven der Kohlenutzung in Kraftwerken mit Vergasung. Chem Ing Tech 83:1805–1819

    Article  Google Scholar 

  4. Beránek J, Rose K, Winterstein G (1975) Grundlagen der Wirbelschicht-Technik. Krausskopf, Mainz

    Google Scholar 

  5. Berkowitz N (1994) An introduction to coal technology, 2. Aufl. Academic Press, San Diego [u.a.]

    Google Scholar 

  6. Berndt A (2014) Untersuchungen zum Partikelverhalten von festen Energieträgern unter Aufheizbedingungen. Diplomarbeit, TU Bergakademie Freiberg

    Google Scholar 

  7. Beyssac O, Brunet F, Petitet JP, Goffe B, Rouzaud JN (2003) Experimental study of the microtextural and structural transformations of carbonaceous materials under pressure and temperature. Eur J Mineral 15:937–951

    Article  Google Scholar 

  8. Bieniawski ZT (1968) The effect of specimen size on compressive strength of coal. Int J Rock Mech MinSci 5(4):325–335

    Article  Google Scholar 

  9. Chen W, Nagarajan G, Zhang Z et al (1994) Stochastic modeling of devolatilization-induced coal fragmentation during fluidized-bed combustion. Ind Eng Chem Res 33:137–145

    Article  Google Scholar 

  10. Chirone R, Masimilla L (1989) The application of Weibull theory to primary fragmentation of a coal during devolatilization. Powder Technol 57:197–212

    Article  Google Scholar 

  11. Chirone R, Massimilla L (1991) Primary fragmentation in fluidized bed combustion of anthracites. Powder Technol 64:249–258

    Article  Google Scholar 

  12. Chirone R, Massimilla L, Salatino P (1991) Comminution of carbons in fluidized bed combustion. Prog Energy Combust Sci 17:297–326

    Article  Google Scholar 

  13. Dacombe P, Pourkashanin M, Williams A et al (1999) Combustion-included fragmentation behaviour of isolated coal particles. Fuel 78:1847–1857

    Article  Google Scholar 

  14. Dakic D, van der Honing G, Vals M (1989) Fragmentation and swelling of various coals during devolatilisation in a fluidized bed. Fuel 68:911–916

    Article  Google Scholar 

  15. Eslami MR (2013) Theory of elasticity and thermal stresses. Explanations, problems and solutions. SpringerLink, Bücher, Springer, Dordrecht

    Book  Google Scholar 

  16. Evans I, Pomeroy CD, Berenbaum R (1961) The compressive strength of coal. Colliery Engng 38(123–127):75–80

    Google Scholar 

  17. Fletcher TH (1989) Time-resolved temperature measurements of individual coal particles during devolatilization. Combust Sci Technol 63:89–105.

    Article  Google Scholar 

  18. Friedemann J, Baitalow F, Ceia TF et al (2014) Experimentelle Untersuchungen zur Primärfragmentierung von Kohlepartikeln im Drop-Kalorimeter. Chem Ing Tech 86(10):1790–1796

    Article  Google Scholar 

  19. Fritz W (1943) Allgemeiner Überblick über das Verhalten der Wärme- und Temperaturleitfähigkeit von Kohle. Forschung auf dem Gebiet des Ingenieurwesens A14(1):1–10

    Article  Google Scholar 

  20. Gentzis T, Deisman N, Chalaturnyk RJ (2007) Geomechanical properties and permeability of coals from the foothills and mountain regions of western Canada. Int J Coal Geol 69(3):153–164

    Article  Google Scholar 

  21. Gornostayev SS, Härkki JJ (2007) Graphite crystals in blast furnace coke. Carbon 45:1145–1151

    Article  Google Scholar 

  22. Gräbner M, Meyer B (2014) Performance and exergy analysis of the current developments in coal gasification technology. Fuel 116:910–920

    Article  Google Scholar 

  23. Grote KH, Feldhusen J (Hrsg) (2007) Dubbel. Taschenbuch für den Maschinenbau. SpringerLink: Bücher. Springer Berlin Heidelberg, zweiundzwanzigste, neubearbeitete und erweiterte Auflage

    Google Scholar 

  24. Haider A, Levenspiel O (1989) Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol 58:63–70

    Article  Google Scholar 

  25. Hayashi J (2000) Rapid conversion of tar and char from pyrolysis of a brown coal by reactions with steam in a drop-tube reactor. Fuel 79:439–447

    Article  Google Scholar 

  26. Hiramatsu Y, Oka Y (1966) Determination of the tensile strength of rock by a compression test of an irregular test piece. Int J Rock Mech MinSci 3(2):89–90

    Article  Google Scholar 

  27. Honda H, Egi K, Toyoda S, Sanada Y, Furuta T (1964) Electronic properties of heat treated coals. Carbon 1:155–164

    Article  Google Scholar 

  28. Honda H, Sanada Y, Furuta T (1966) Mechanical and thermal properties of heat-treated coals. Carbon 3:421–428

    Article  Google Scholar 

  29. Kabelac S (2006) VDI-Wärmeatlas; [Berechnungsunterlagen für Druckverlust, Wärme- und Stoffübergang]. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  30. Kim R, Li D, Jeon C (2014) Experimental investigation of ignition behavior for coal rank using a flat flame burner at a high heating rate. Exp Therm Fluid Sci 54:212–218. https://doi.org/10.1016/j.expthermflusci.2013.12.017

    Article  Google Scholar 

  31. Ko HY, Gerstle KH (1976) Elastic properties of two coals. Int J Rock Mech MinSci 13(3):81–90

    Article  Google Scholar 

  32. Kosowska-Galachowska M, Luckos A (2010) A model of primary fragmentation of coal particles in fluidized-bed combustion. Proceedings of the 27th Pittsburgh Coal Conference, Curran Associates Inc., Red Hock, NY, p. 1292

    Google Scholar 

  33. Kosowska-Galachowska M, Luckos A (2010) An experimental investigation into the fragmentation of coal particles in a fluidized-bed combustor. Proceedings of the 20th International Conference on Fluidized Bed Combustion, Springer-Verlag, Berlin, Heidelberg, p. 330–334

    Google Scholar 

  34. Kunii D, Levenspiel O (1991) Fluidization engineering. Butterworth-Heinemann, Boston.

    Google Scholar 

  35. Kürten H, Raasch J, Rumpf H (1966) Beschleunigung eines kugelförmigen Feststoffteilchens im Strömungsfeld konstanter Geschwindigkeit. Chem Ing Techn 38(9):941–948

    Article  Google Scholar 

  36. Lee SH, Kim SD, Lee DH (2002) Particle size reduction of anthracite coals during devolatilization in a thermobalance reactor. Fuel 81:1633–1639

    Article  Google Scholar 

  37. Leschonski K, Alex W, Koglin B (1974) Teilchengrößenenanalyse. Chem Ing Techn 46:641–644

    Article  Google Scholar 

  38. Lissner A, Thau A (1952) Die Chemie der Braunkohle Band 2 Chemisch-Technische Veredlung. VEB Wilhelm Knapp Verlag, Halle, Leipzig

    Google Scholar 

  39. Lissner A, Thau A (1956) Die Chemie der Braunkohle Band 1 Wissenschaftlicher Teil. VEB Wilhelm Knapp Verlag, Halle, Leipzig

    Google Scholar 

  40. Liu G, Wu H, Gupta R et al (2000) Modeling the fragmentation of non-uniform porous char particles during pulverized coal combustion. Fuel 79(6):627–633

    Article  Google Scholar 

  41. Marban G, Pis JJ, Fuertes AB (1995) Characterizing fuels for atmospheric fluidized bed combustion. Combust Flame 103:41–58

    Article  Google Scholar 

  42. Marban G, Pis JJ, Fuertes AB (1996) Simulation of secondary fragmentation during fluidized bed combustion of char particles. Powder Technol 89:71–78

    Article  Google Scholar 

  43. Martin H (1980) Wärme- und Stoffübertragung in der Wirbelschicht. Chem Ing Tech 52:199–209

    Article  Google Scholar 

  44. Matsuoka K, Ma Z, Akiho H, Zhang Z, Tomita A, Fletcher TH, Wójtowicz MA, Niksa S (2003) High-pressure coal pyrolysis in a drop tube furnace. Energy Fuels 17:984–990

    Article  Google Scholar 

  45. Millard DJ, Newman PC, Phillips JW (1955) The apparent strength of extensively cracked materials. Proc Phys Soc Sect B 68(10):723

    Article  Google Scholar 

  46. Naredi P, Pisupati S (2011) Effect of CO2 during coal pyrolysis and char burnout in oxy-coal combustion. Energy Fuels 25:2452–2459

    Article  Google Scholar 

  47. Parish BM (1967) The effect of rank and particle size on the plastic behaviour of coal. Brit J Appl Phys 18(2):233

    Article  Google Scholar 

  48. Pereira CC, Pinho C (2014) Influence of particle fragmentation and non-sphericity on the determination of diffusive and kinetic fluidized bed biochar combustion data. Fuel 131:77–88. https://doi.org/10.1016/j.fuel.2014.04.072

    Article  Google Scholar 

  49. Pinho C (2006) Fragmentation on batches of coke or char particles during fluidized bed combustion. Chem Eng J 115(3):147–155. https://doi.org/10.1016/j.cej.2005.10.001

    Article  MathSciNet  Google Scholar 

  50. Ranjith PG, Perera MSA (2011) Effects of cleat performance on strength reduction of coal in CO2 sequestration. Energy 45(1):1069–1075, 2012. The 24th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy, {ECOS} 2011

    Article  Google Scholar 

  51. Reichel D, Siegl S, Krzack S, Meyer B (2013) Brown coal pyrolysis in a pressurized drop tube reactor – product distribution and characterization ICCS&T 2013. EMS Energy Institute, Pennsylvania

    Google Scholar 

  52. Reichel D, Siegl S, Neubert C, Krzack S (2015) Determination of pyrolysis behavior of brown coal in a pressurized drop tube reactor. Fuel 158:983–998

    Article  Google Scholar 

  53. Ribas L, Cordeiro GC, Filho RDT, Tavares LM (2014) Measuring the strength of irregularly-shaped fine particles in a micro compression tester. Miner Eng 65(0):149–155

    Article  Google Scholar 

  54. Sasongko D, Stubington JF (1996) Significant factors affecting devolatilization of fragmenting, non-swelling coals in fluidized bed combustion. Chem Eng Sci 51(16):3909–3918

    Article  Google Scholar 

  55. Schmalfeld J (Hrsg) (2008) Die Veredlung und Umwandlung von Kohle; Technologien und Projekte 1970 bis 2000 in Deutschland. Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas undKohle e.V., Hamburg

    Google Scholar 

  56. Schubert H (2003) Handbuch der Mechanischen Verfahrenstechnik. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  57. Senneca O, Urciuolo M, Chirone R et al (2011) An experimental study of fragmentation of coals during fast pyrolysis at high temperature and pressure. Fuel 90(9):2931–2938. https://doi.org/10.1016/j.fuel.2011.04.012

    Article  Google Scholar 

  58. Senneca O, Urciuolo M, Chirone R (2013) A semidetailed model of primary fragmentation of coal. Fuel 104:253–261. https://doi.org/10.1016/j.fuel.2012.09.026

    Article  Google Scholar 

  59. Siegl S, Reichel D, Krzack S, Meyer B (2013) Proceedings of 30th Annual International Pittsburgh Coal Conference, Beijing, 5–18. Sept 2013, S 3085–3091. ISBN: 978-1-62993-438-9

    Google Scholar 

  60. Simone M, Biagini E, Galletti C, Tognotti L (2008) Qualification of a lab-scale drop tube reactor for evaluating high heating rate devolatilization kinetics. In: Proceedings of the 31st meeting, Torino, 17–20. Juni 2008. ISBN: 978-88-88104-07-2

    Google Scholar 

  61. Solomon PR, Fletcher TH, Pugmire RJ (1993) Progress in coal pyrolysis. Fuel 72:587–597

    Article  Google Scholar 

  62. Sreekanth M, Kolar AK, Leckner B (2008) A semi-analytical model to predict primary fragmentation of wood in a bubbling fluidized bed combustor. J Anal Appl Pyrolysis 83(1):88–100. https://doi.org/10.1016/j.jaap.2008.06.007

    Article  Google Scholar 

  63. Sreekanth M, Prasad BVSSS, Kolar AK et al (2008) Stresses in a cylindrical wood particle undergoing devolatilization in a hot bubbling fluidized bed. Energy Fuels 22(3):1549–1559. https://doi.org/10.1021/ef700658k

    Article  Google Scholar 

  64. Stanmore B, Brillard A, Gilot P et al (1996) Fragmentation of small coal particles under fluidized-bed combustor conditions Proc Combust Inst 26:3269–3275

    Article  Google Scholar 

  65. Stiess M (2009) Mechanische Verfahrenstechnik –Partikeltechnologie 1. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  66. Stubington JF, Linjewile TM (1988) The effects of fragmentation on devolatization of large coal particles. Fuel 68:155–160

    Article  Google Scholar 

  67. Tavares LM, King RP (1998) Single-particle fracture under impact loading. Int J Miner Process 54(1):1–28

    Article  Google Scholar 

  68. Tilghman MB, Mitchell RE (2013) Characterizing char particle fragmentation during pulverized coal combustion. Proc Combust Inst 34(2):2461–2469. https://doi.org/10.1016/j.proci.2012.07.065

    Article  Google Scholar 

  69. van Krevelen DW (1961) Coal. Typology, chemistry, physics, constitution. Elsevier, Amsterdam [u.a.]

    Google Scholar 

  70. Wagner A (2014) Untersuchungen zum thermischen Zerfallsverhalten von Kohlepartikeln bei verschiedener Gas-Feststoff-Kontaktierung. Master’s thesis

    Google Scholar 

  71. Wang ALT, Stubington JF (2002) Generation of fine chars from Australian black coals in pressurized fluidized bed combustion. Combust Flame 129:192–203

    Article  Google Scholar 

  72. White JM, Mazurkiewicz M (1989) Effect of moisture content on mechanical properties of Nemo coal, Moberly, Missouri U.S.A. Min Sci Technol 9(2):181–185

    Article  Google Scholar 

  73. Zeng D, Fletcher TH (2005) Effects of pressure on coal pyrolysis and char morphology. Energy Fuels 19:1828–1838

    Article  Google Scholar 

  74. Zhang H, Cen K, Yan J et al (2002) The fragmentation of coal particles during the coal combustion in a fluidized bed. Fuel 81:1835–1840

    Article  Google Scholar 

  75. Zhong S, Baitalow F, Nikrityuk P et al (2014) The effect of particle size on the strength parameters of German brown coal and its chars. Fuel 125:200–205. https://doi.org/10.1016/j.fuel.2014.02.022

    Article  Google Scholar 

  76. Zhong S, Baitalow F, Gutte H, Meyer B Correlations between the tensile strength of coal particles and various coal properties. Fuel, submitted

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Felix Baitalow or Denise Klinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Friedemann, J. et al. (2018). Partikelverhalten. In: Krzack, S., Gutte, H., Meyer, B. (eds) Stoffliche Nutzung von Braunkohle. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46251-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46251-5_17

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46250-8

  • Online ISBN: 978-3-662-46251-5

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics