Skip to main content

Local Transformation Equations and Essential Parameters

  • Chapter
  • First Online:
Theory of Transformation Groups I
  • 1204 Accesses

Abstract

Let \(\mathbb {K}= \mathbb {R}\) or \(\mathbb {C}\), throughout. As said in Chap. 1, transformation equations \(x_i' = f_i ( x; \, a_1, \dots , a_r)\), \(i =1, \dots , n\), which are local, analytic diffeomorphisms of \(\mathbb {K}^n\) parametrized by a finite number \(r\) of real or complex numbers \(a_1, \dots , a_r\), constitute the archetypal objects of Lie’s theory. The preliminary question is to decide whether the \(f_i\) really depend upon all parameters, and also, to get rid of superfluous parameters, if there are any. Locally in a neighborhood of a fixed \(x_0\), one expands \(f_i ( x; \, a) = \sum _{ \alpha \in \mathbb {N}^n}\, \fancyscript{ U}_\alpha ^i (a) \, ( x - x_0)^\alpha \) in power series and one looks at the infinite coefficient mapping  \(\mathsf{U}_\infty : \, a \longmapsto \big ( \fancyscript{ U}_\alpha ^i ( a) \big )_{ \alpha \in \mathbb {N}^n}^{ 1\leqslant i \leqslant n}\) from \(\mathbb {K}^r\) to \(\mathbb {K}^\infty \), which is expected to faithfully describe the dependence with respect to \(a\) in question. If \(\rho _\infty \) denotes the maximal, generic and locally constant rank of this map, with of course \(0 \leqslant \rho _\infty \leqslant r\), then the answer says that locally in a neighborhood of a generic \(a_0\), there exist both a local change of parameters \(a \mapsto \big ( \mathsf{u}_1 ( a), \dots , \mathsf{u}_{\rho _\infty } ( a) \big ) =: \mathsf{u}\) decreasing the number of parameters from \(r\) down to \(\rho _\infty \), and new transformation equations:

$$ x_i' = g_i \big (x;\,\mathsf{u}_1,\dots ,\mathsf{u}_{\rho _\infty }\big ) \ \ \ \ \ \ \ \ \ \ {{(i\,=\,1\,\cdots \,n)}} $$

depending only upon \(\rho _\infty \) parameters which give again the old ones:

$$ g_i\big (x;\,\mathsf{u}(a)\big ) \equiv f_i(x;\, a) \ \ \ \ \ \ \ \ \ \ {{(i\,=\,1\,\cdots \,n)}}. $$

At the end of this brief chapter, before giving a precise introduction to the local Lie group axioms, we present an example due to Engel which shows that the axiom of inverse cannot be deduced from the axiom of composition, contrary to one of Lie’s Idées fixes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, M., Hermann, R.: Sophus Lie’s 1880 Transformation Group paper. Math. Sci. Press, Brookline, Mass. (1975)

    Google Scholar 

  2. Bochnak, J., Coste, M., Roy, M.-F.: Géométrie algébrique réelle. Ergenisse der Mathematik und ihrer Grenzgebiete (3), 12. Springer-Verlag, Berlin, x+373 pp. (1987).

    Google Scholar 

  3. Chirka, E.M.: Complex analytic sets. Mathematics and its applications (Soviet Series), 46. Kluwer Academic Publishers Group, Dordrecht, xx+372 pp. (1989).

    Google Scholar 

  4. Engel, F., Lie, S.: Theorie der Transformationsgruppen. Erster Abschnitt. Unter Mitwirkung von Prof. Dr. Friedrich Engel, bearbeitet von Sophus Lie, Verlag und Druck von B.G. Teubner, Leipzig und Berlin, xii+638 pp. (1888). Reprinted by Chelsea Publishing Co., New York, N.Y. (1970).

    Google Scholar 

  5. Gunning, R.: Introduction to Holomorphic Functions of Several Variables, 3 vols. Wadsworth & Brooks/Cole. I: Function theory, xx+203 pp. II: Local theory, +218 pp. III: Homological theory, +194 pp. (1990).

    Google Scholar 

  6. Hawkins, T.: Emergence of the theory of Lie groups. An essay in the history of mathematics 1869–1926. Sources and studies in the history of mathematics and physical sciences, Springer-Verlag, Berlin, xiii+564 pp. (2001).

    Google Scholar 

  7. Lie, S.: Theorie der Transformationsgruppen. Math. Ann. 16, 441–528 (1880). Translated in English and commented. In: [1].

    Google Scholar 

  8. Malgrange, B.: Ideals of Differentiable Functions. Tata Institute of Fundamental Research Studies in Mathematics, No. 3, Bombay. Oxford University Press, London, vii+106 pp. (1967).

    Google Scholar 

  9. Merker, J.: On the local geometry of generic submanifolds of \(\mathbb{C}^n\) and the analytic reflection principle. Journal of Mathematical Sciences (N. Y.) 125, 751–824 (2005).

    Google Scholar 

  10. Milnor, J.: Dynamics in one complex variable. Annals of Mathematics Studies, 160. Princeton University Press, Princeton, Third Edition, viii+304 pp. (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lie, S. (2015). Local Transformation Equations and Essential Parameters. In: Merker, J. (eds) Theory of Transformation Groups I. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46211-9_2

Download citation

Publish with us

Policies and ethics