Skip to main content

Neue Entwicklungen und angrenzende Themenfelder

  • Chapter
  • First Online:
  • 6013 Accesses

Zusammenfassung

Im vorangegangenen Kapitel haben wir mit Methoden der Informationstheorie eine Eigenschaft eukaryotischer DNA-Sequenzen auf der Skala ganzer Chromosomen sichtbar gemacht, die sehr fundamental scheint: Die statistischen Korrelationen zwischen den Symbolen einer solchen Sequenz klingen unerwartet langsam mit dem Symbolabstand ab. Es gibt viele Vermutungen über die Ursache dieser langreichweitigen Korrelationen. So wird unter anderem vermutet, dass sie (zumindest zum Teil) eine Folge der DNA-Struktur sind oder mit mobilen Elementen oder Mikrosatelliten (und damit mit Aspekten der Genomevolution) in Verbindung gebracht werden können.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Quellen und weiterführende Literatur

  • Acebrón JA, Bonilla LL, Vicente CJP, Ritort F, Spigler R (2005) The kuramoto model: a simple paradigm for synchronization phenomena. Rev Mod Phys 77:137

    Article  Google Scholar 

  • Barabási AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68

    Article  PubMed Central  PubMed  Google Scholar 

  • Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509

    Article  PubMed  Google Scholar 

  • Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101

    Article  PubMed  Google Scholar 

  • Barnsley MF (1993) Fractals everywhere, 2. Aufl. Morgan Kaufmann, San Francisco Boccaletti S, Latora V, Moreno Y, ChavezM, Hwang DU (2006) Complex networks: Structure and dynamics. Physics Reports 424:175–308

    Google Scholar 

  • Bornholdt S (2003) Handbook of graphs and networks: from the genome to the internet. Wiley-VCH, Weinheim

    Google Scholar 

  • Bornholdt S (2005) Less is more in modeling large genetic networks. Science 310:449

    Article  CAS  PubMed  Google Scholar 

  • Drossel B (2008) Random Boolean networks. Reviews of nonlinear dynamics and complexity

    Google Scholar 

  • Goldbeter A, Koshland DE (1981) An amplified sensitivity arising from covalent modification in biological systems. PNAS 78(6840–6844)

    Google Scholar 

  • Guimerà R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433:895

    Article  PubMed Central  PubMed  Google Scholar 

  • Hütt MT (2001) Datenanalyse in der Biologie. Springer, Berin

    Google Scholar 

  • Huang CY, Ferrell JE (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. PNAS 93:10078–10083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hucka M, Fenley AP, Sauro H, Bolouri H, Doyle J et al. (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531

    Article  CAS  PubMed  Google Scholar 

  • Hütt MT (2014) Understanding genetic variation – the value of systems biology. Br J Clin Pharmacol 77:597–605

    Article  PubMed Central  PubMed  Google Scholar 

  • Karlebach G, Shamir R (2008) Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol 9:770–80

    Article  CAS  PubMed  Google Scholar 

  • Kauffman S (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22:437–467

    Article  CAS  PubMed  Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  CAS  PubMed  Google Scholar 

  • Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H (2005) Systems biology in practice. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Kuramoto Y (1984) Chemical oscillations, waves and turbulence. Springer, Berlin

    Book  Google Scholar 

  • Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. PNAS 101:4781–4786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lüttge U, Hütt MT (2004) Network dynamics in plant biology: current progress in historical perspective. Prog Bot 66:278–310

    Google Scholar 

  • Marr C, Hütt MT (2009) Outer-totalistic cellular automata on graphs. Phys Lett A 373:546–549

    Article  CAS  Google Scholar 

  • Marr C, Theis F, Liebovitch L, HüttM(2010) Patterns of subnet usage reveal distinct scales of regulation in the transcriptional regulatory network of Escherichia coli. PLoS Comput Biol 6:e1000836

    Google Scholar 

  • Maslov S, Sneppen K (2002) Specifcity and stability in topology of protein networks. Science 296:910

    Article  CAS  PubMed  Google Scholar 

  • Munrubia SC, Mikhailov AS, Zanette DH (2004) Emergence of dynamical order. World Scientific, Singapur

    Google Scholar 

  • Newman MEJ (2006) Modularity and community structure in networks. PNAS 103:8577–8582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palsson BØ (2008) Systems biology: properties of reconstructed networks. Cambridge University Press, Cambridge

    Google Scholar 

  • Peng CK, Buldyrev SV, Goldberger AL, Havlin S, Sciortina F et al. (1992) Longrange correlations in nucleotide sequences. Nature 356:168

    Article  CAS  PubMed  Google Scholar 

  • Pikovsky A, Rosenblum M, Kurths J (2003) Synchronization. Cambridge University Press, Cambridge

    Google Scholar 

  • Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551

    Article  CAS  PubMed  Google Scholar 

  • Sawai S, Thomason PA, Cox EC (2005) An autoregulatory circuit for long-range self-organization in Dictyostelium cell populations. Nature 433:323

    Article  CAS  PubMed  Google Scholar 

  • Solé RV, Manrubia SC, Luque B, Delgado J, Bascompte J (1996) Phase transitions and complex systems. Complexity 1:13–26

    Article  Google Scholar 

  • Strogatz S (2003) Sync: The emerging science of spontaneous order. Hyperion, New York

    Google Scholar 

  • Tyson JJ, Chen KC, Novák B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221–231

    Article  CAS  PubMed  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks. Nature 393:440

    Article  CAS  PubMed  Google Scholar 

  • Westerhoff HV, Palsson BØ (2004) The evolution of molecular biology into systems biology. Nat Biotechnol 22:1249–1252

    Article  CAS  PubMed  Google Scholar 

  • Winfree AT (1967) Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol 16:15

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc-Thorsten Hütt .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hütt, MT., Dehnert, M. (2016). Neue Entwicklungen und angrenzende Themenfelder. In: Methoden der Bioinformatik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46150-1_5

Download citation

Publish with us

Policies and ethics