Advertisement

Neue Entwicklungen und angrenzende Themenfelder

  • Marc-Thorsten Hütt
  • Manuel Dehnert
Chapter

Zusammenfassung

Im vorangegangenen Kapitel haben wir mit Methoden der Informationstheorie eine Eigenschaft eukaryotischer DNA-Sequenzen auf der Skala ganzer Chromosomen sichtbar gemacht, die sehr fundamental scheint: Die statistischen Korrelationen zwischen den Symbolen einer solchen Sequenz klingen unerwartet langsam mit dem Symbolabstand ab. Es gibt viele Vermutungen über die Ursache dieser langreichweitigen Korrelationen. So wird unter anderem vermutet, dass sie (zumindest zum Teil) eine Folge der DNA-Struktur sind oder mit mobilen Elementen oder Mikrosatelliten (und damit mit Aspekten der Genomevolution) in Verbindung gebracht werden können.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Quellen und weiterführende Literatur

  1. Acebrón JA, Bonilla LL, Vicente CJP, Ritort F, Spigler R (2005) The kuramoto model: a simple paradigm for synchronization phenomena. Rev Mod Phys 77:137CrossRefGoogle Scholar
  2. Barabási AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68PubMedCentralCrossRefPubMedGoogle Scholar
  3. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509CrossRefPubMedGoogle Scholar
  4. Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101CrossRefPubMedGoogle Scholar
  5. Barnsley MF (1993) Fractals everywhere, 2. Aufl. Morgan Kaufmann, San Francisco Boccaletti S, Latora V, Moreno Y, ChavezM, Hwang DU (2006) Complex networks: Structure and dynamics. Physics Reports 424:175–308Google Scholar
  6. Bornholdt S (2003) Handbook of graphs and networks: from the genome to the internet. Wiley-VCH, WeinheimGoogle Scholar
  7. Bornholdt S (2005) Less is more in modeling large genetic networks. Science 310:449CrossRefPubMedGoogle Scholar
  8. Drossel B (2008) Random Boolean networks. Reviews of nonlinear dynamics and complexityGoogle Scholar
  9. Goldbeter A, Koshland DE (1981) An amplified sensitivity arising from covalent modification in biological systems. PNAS 78(6840–6844)Google Scholar
  10. Guimerà R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433:895PubMedCentralCrossRefPubMedGoogle Scholar
  11. Hütt MT (2001) Datenanalyse in der Biologie. Springer, BerinGoogle Scholar
  12. Huang CY, Ferrell JE (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. PNAS 93:10078–10083PubMedCentralCrossRefPubMedGoogle Scholar
  13. Hucka M, Fenley AP, Sauro H, Bolouri H, Doyle J et al. (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531CrossRefPubMedGoogle Scholar
  14. Hütt MT (2014) Understanding genetic variation – the value of systems biology. Br J Clin Pharmacol 77:597–605PubMedCentralCrossRefPubMedGoogle Scholar
  15. Karlebach G, Shamir R (2008) Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol 9:770–80CrossRefPubMedGoogle Scholar
  16. Kauffman S (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22:437–467CrossRefPubMedGoogle Scholar
  17. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664CrossRefPubMedGoogle Scholar
  18. Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H (2005) Systems biology in practice. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  19. Kuramoto Y (1984) Chemical oscillations, waves and turbulence. Springer, BerlinCrossRefGoogle Scholar
  20. Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. PNAS 101:4781–4786PubMedCentralCrossRefPubMedGoogle Scholar
  21. Lüttge U, Hütt MT (2004) Network dynamics in plant biology: current progress in historical perspective. Prog Bot 66:278–310Google Scholar
  22. Marr C, Hütt MT (2009) Outer-totalistic cellular automata on graphs. Phys Lett A 373:546–549CrossRefGoogle Scholar
  23. Marr C, Theis F, Liebovitch L, HüttM(2010) Patterns of subnet usage reveal distinct scales of regulation in the transcriptional regulatory network of Escherichia coli. PLoS Comput Biol 6:e1000836Google Scholar
  24. Maslov S, Sneppen K (2002) Specifcity and stability in topology of protein networks. Science 296:910CrossRefPubMedGoogle Scholar
  25. Munrubia SC, Mikhailov AS, Zanette DH (2004) Emergence of dynamical order. World Scientific, SingapurGoogle Scholar
  26. Newman MEJ (2006) Modularity and community structure in networks. PNAS 103:8577–8582PubMedCentralCrossRefPubMedGoogle Scholar
  27. Palsson BØ (2008) Systems biology: properties of reconstructed networks. Cambridge University Press, CambridgeGoogle Scholar
  28. Peng CK, Buldyrev SV, Goldberger AL, Havlin S, Sciortina F et al. (1992) Longrange correlations in nucleotide sequences. Nature 356:168CrossRefPubMedGoogle Scholar
  29. Pikovsky A, Rosenblum M, Kurths J (2003) Synchronization. Cambridge University Press, CambridgeGoogle Scholar
  30. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551CrossRefPubMedGoogle Scholar
  31. Sawai S, Thomason PA, Cox EC (2005) An autoregulatory circuit for long-range self-organization in Dictyostelium cell populations. Nature 433:323CrossRefPubMedGoogle Scholar
  32. Solé RV, Manrubia SC, Luque B, Delgado J, Bascompte J (1996) Phase transitions and complex systems. Complexity 1:13–26CrossRefGoogle Scholar
  33. Strogatz S (2003) Sync: The emerging science of spontaneous order. Hyperion, New YorkGoogle Scholar
  34. Tyson JJ, Chen KC, Novák B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221–231CrossRefPubMedGoogle Scholar
  35. Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks. Nature 393:440CrossRefPubMedGoogle Scholar
  36. Westerhoff HV, Palsson BØ (2004) The evolution of molecular biology into systems biology. Nat Biotechnol 22:1249–1252CrossRefPubMedGoogle Scholar
  37. Winfree AT (1967) Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol 16:15CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Dep. of Life Sciences and ChemistryJacobs University BremenBremenDeutschland
  2. 2.Fak. Biotechnologie und BioinformatikHochschule Weihenstephan-TriesdorfFreisingDeutschland

Personalised recommendations