Skip to main content

Novel Aluminum Based Composites by Selective Laser Melting (SLM) Additive Manufacturing (AM): Tailored Formation of Multiple Reinforcing Phases and its Mechanisms

  • Chapter
  • First Online:
Laser Additive Manufacturing of High-Performance Materials

Abstract

Selective laser melting (SLM) of the SiC/AlSi10Mg composites was performed to prepare the Al-based composites with the multiple reinforcing phases. The influence of the SLM processing parameters on the constitutional phases, microstructural features, and mechanical performance of the SLM-processed Al-based composites was studied. The reinforcing phases in the SLM-processed Al-based composites included the unmelted micron-sized SiC particles, the in situ formed micron-sized Al4SiC4 strips, and the in situ produced submicron Al4SiC4 particles. As the input “linear laser energy density” (LED) increased, the extent of the in situ reaction between the SiC particles and the Al matrix increased, resulting in a larger degree of formation of Al4SiC4 reinforcement. The densification rate of the SLM-processed Al-based composite parts increased as the applied LED increased. A sufficiently high density (~ 96 % theoretical density) was achieved for LED larger than 1000 J/m. Due to the generation of the multiple reinforcing phases, elevated mechanical properties were obtained for the SLM-processed Al-based composites, showing a high microhardness of 214 HV0.1, a considerably low coefficient of friction (COF) of 0.39, and a reduced wear rate of 1.56 × 10−5mm3N−1m−1. At an excessive laser energy input, the grain size of the in situ formed Al4SiC4 reinforcing phase, both the strip- and particle-structured Al4SiC4, increased markedly. The significant grain coarsening and formation of the interfacial microscopic shrinkage porosity lowered the mechanical properties of the SLM-processed Al-based composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tang L, Landers RG (2011) Layer-to-layer height control for laser metal deposition process. ASME J Manuf Sci Eng 133(2):021009

    Article  Google Scholar 

  2. Kamara AM, Marimuthu S, Li L (2011) A numerical investigation into residual stress characteristics in laser deposited multiple layer waspaloy parts. ASME J Manuf Sci Eng 133(3):031013

    Article  Google Scholar 

  3. Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) Characterizing the effect of laser power density on microstructure, microhardness, and surface finish of laser deposited titanium alloy. ASME J Manuf Sci Eng 135(6):064502

    Article  Google Scholar 

  4. Edwards P, O’Conner A, Ramulu M (2013) Electron beam additive manufacturing of titanium components: properties and performance. ASME J Manuf Sci Eng 135(6):061016

    Article  Google Scholar 

  5. Sammons PM, Bristow DA, Landers RG (2013) Height dependent laser metal deposition process modeling. ASME J Manuf Sci Eng 135(5):054501

    Article  Google Scholar 

  6. Tsopanos S, Mines RAW, McKown S et al (2010) The influence of processing parameters on the mechanical properties of selectively laser melted stainless steel microlattice structures. ASME J Manuf Sci Eng 132(4):041011

    Article  Google Scholar 

  7. Chen TB, Zhang YW (2007) Three-dimensional modeling of laser sintering of a two-component metal powder layer on top of sintered layers. ASME J Manuf Sci Eng 129(3):575–582

    Article  Google Scholar 

  8. Chen TB, Zhang YW (2006) Three-dimensional modeling of selective laser sintering of two-component metal powder layers. ASME J Manuf Sci Eng 128(1):299–306

    Article  Google Scholar 

  9. Xiao B, Zhang YW (2008) Numerical simulation of direct metal laser sintering of single-component powder on top of sintered layers. ASME J Manuf Sci Eng 130(4):041002

    Article  Google Scholar 

  10. Gu DD, Meiners W, Wissenbach K et al (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57(3):133–164

    Article  Google Scholar 

  11. Kruth JP, Levy G, Klocke F et al (2007) Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann Manuf Technol 56(2):730–759

    Article  Google Scholar 

  12. Gu DD, Hagedorn YC, Meiners W et al (2012) Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater 60(9):3849–3860

    Article  Google Scholar 

  13. Louvis E, Fox P, Sutcliffe CJ (2011) Selective laser melting of aluminium components. J Mater Process Technol 211(2):275–284

    Article  Google Scholar 

  14. Brandl E, Heckenberger U, Holzinger V et al (2012) Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater Des 34:159–169

    Article  Google Scholar 

  15. Sercombe TB, Schaffer GB (2003) Rapid manufacturing of aluminum components. Science 301(5637):1225–1227

    Article  Google Scholar 

  16. Gu DD, Dai DH, Zhang GQ et al (2012) Growth mechanisms of in situ TiC in laser melted Ti-Si-C ternary system. App Phys Lett 101(17):171603

    Article  Google Scholar 

  17. Gusarov AV, Yadroitsev I, Bertrand Ph et al (2009) Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. ASME J Heat Transfer 131(7):072101

    Article  Google Scholar 

  18. Li YL, Gu DD (2014) Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater Des 63:856–867

    Article  Google Scholar 

  19. Agarwala M, Bourell D, Beaman J et al (1995) Direct selective laser sintering of metals. Rapid Prototyp J 1(1):26–36

    Article  Google Scholar 

  20. Das M, Balla VK, Basu D et al (2010) Laser processing of SiC-particle-reinforced coating on titanium. Scr Mater 63(4):438–441

    Article  Google Scholar 

  21. Lavernia EJ, Srivatsan TS (2010) The rapid solidification processing of materials: science, principles, technology, advances, and applications. J Mater Sci 45(2):287–325

    Article  Google Scholar 

  22. Bartkowiak K, Ullrich S, Frick T et al (2011) New developments of laser processing aluminium alloys via additive manufacturing technique. Phys Procedia 12:393–401

    Article  Google Scholar 

  23. Dadbakhsh S, Hao L (2012) Effect of Al alloys on selective laser melting behaviour and microstructure of in situ formed particle reinforced composites. J Alloy Compd 541:328–334

    Article  Google Scholar 

  24. Tang L, Landers RG (2010) Melt pool temperature control for laser metal deposition processes-part I: online temperature control. ASME J Manuf Sci Eng 132(1):011010

    Article  Google Scholar 

  25. Tang L, Landers RG (2010) Melt pool temperature control for laser metal deposition processes-part II: layer-to-layer temperature control. ASME J Manuf Sci Eng 132(1):011011

    Article  Google Scholar 

  26. Prashanth KG, Scudino S, Klauss HJ et al (2014) Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment. Mater Sci Eng A 590:153–160

    Article  Google Scholar 

  27. Zhang BC, Liao HL, Coddet C (2012) Effects of processing parameters on properties of selective laser melting Mg-9%Al powder mixture. Mater Des 34:753–758

    Article  Google Scholar 

  28. Santos EC, Shiomi M, Osakada K et al (2006) Rapid manufacturing of metal components by laser forming. Int J Mach Tools Manuf 46(12–13):1459–1468

    Article  Google Scholar 

  29. Kruth JP, Wang X, Laoui T et al (2003) Lasers and materials in selective laser sintering. Assem Autom 23(4):357–371

    Article  Google Scholar 

  30. Bassani P, Capello E, Colombo D et al (2007) Effect of process parameters on bead properties of A359/SiC MMCs welded by laser. Compos Part A 38(4):1089–1098

    Article  Google Scholar 

  31. Eliasson J, Sandström R (1995) Applications of aluminuium matrix composites. Key Eng Mater 104–107:3–36

    Article  Google Scholar 

  32. Su H, Gao WL, Zhang H et al (2010) Optimization of stirring parameters through numerical simulation for the preparation of aluminum matrix composite by stir casting process. ASME J Manuf Sci Eng 132(6):061007

    Article  Google Scholar 

  33. Yang Y, Li XC (2007) Ultrasonic cavitation-based nanomanufacturing of bulk aluminum matrix nanocomposites. ASME J Manuf Sci Eng 129(2):252–255

    Article  Google Scholar 

  34. Maruyama B (1999) Discontinuously reinforced aluminum: current status and future direction. JOM 51(11):59–61

    Article  Google Scholar 

  35. Prasada SV, Asthana R (2004) Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribol Lett 17(3):445–453

    Article  Google Scholar 

  36. Asgharzadeh H, Simchi A (2009) Supersolidus liquid phase sintering of Al6061/SiC metal matrix composites. Powder Metall 52(1):28–35

    Article  Google Scholar 

  37. Simchi A, Godlinski D (2008) Effect of SiC particles on the laser sintering of Al-7Si-0.3Mg alloy. Scr Mater 59(2):199–202

    Article  Google Scholar 

  38. Simchi A, Godlinski D (2011) Densification and microstructural evolution during laser sintering of A356/SiC composite powders. J Mater Sci 46(5):1446–1454

    Article  Google Scholar 

  39. Anandkumar R, Almeida A, Colaço R et al (2007) Microstructure and wear studies of laser clad Al-Si/SiC(p) composite coatings. Surf Coat Technol 201(24):9497–9505

    Article  Google Scholar 

  40. Ureña A, Rodrigo P, Gil L et al (2001) Interfacial reactions in an Al-Cu-Mg (2009)/SiCw composite during liquid processing Part II Arc welding. J Mater Sci 36(2):429–439

    Article  Google Scholar 

  41. Gu DD, Shen YF (2009) Effects of processing parameters on consolidation and microstructure of W-Cu components by DMLS. J Alloys Compd 473(1–2):107–115

    Article  Google Scholar 

  42. Gu DD, Shen YF, Yang JL et al (2006) Effects of processing parameters on direct laser sintering of multicomponent Cu based metal powder. Mater Sci Technol 22(12):1449–1455

    Article  Google Scholar 

  43. Fischer P, Romano V, Weber HP et al (2003) Sintering of commercially pure titanium powder with a Nd: YAG laser source. Acta Mater 51(6):1651–1662

    Article  Google Scholar 

  44. Xu G, Schultz WW, Kannatey-Asibu E (2004) Application of a front tracking method in gas metal arc welding (GMAW) simulation. ASME J Manuf Sci Eng 127(3):590–597

    Article  Google Scholar 

  45. Wu YF, Kim GY, Anderson IE et al (2010) Experimental study on viscosity and phase segregation of Al-Si powders in microsemisolid powder forming. ASME J Manuf Sci Eng 132(1):011003

    Article  Google Scholar 

  46. Jeswani AJ, Roux JA (2007) Manufacturing modeling of three-dimensional resin injection pultrusion process control parameters for polyester/glass rovings composites. ASME J Manuf Sci Eng 129(1):143–156

    Article  Google Scholar 

  47. Gu DD, Shen YF (2006) Processing and microstructure of submicron WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering. Mater Sci Eng A 435–436:54–61

    Article  Google Scholar 

  48. Zhou XB, De Hosson JThM (1996) Reactive wetting of liquid metals on ceramic substrates. Acta Mater 44(2):421–426

    Article  Google Scholar 

  49. Buchbinder D, Schleifenbaum H, Heidrich S (2011) High Power Selective Laser Melting (HP SLM) of aluminum parts. Phys Procedia 12:271–278

    Article  Google Scholar 

  50. Schrock DJ, Kang D, Bieler TR et al (2014) Phase dependent tool wear in turning Ti-6Al-4V using polycrystalline diamond and carbide inserts. ASME J Manuf Sci Eng 136(4):041018

    Article  Google Scholar 

  51. Bassoli E, Atzeni E, Iuliano L (2011) Grinding micromechanisms of a sintered friction material. ASME J Manuf Sci Eng 133(1):014501

    Article  Google Scholar 

  52. Jain A, Basu B, Kumar BVM et al (2010) Grain size-wear rate relationship for titanium in liquid nitrogen environment. Acta Mater 58(7):2313–2323

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Gu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gu, D. (2015). Novel Aluminum Based Composites by Selective Laser Melting (SLM) Additive Manufacturing (AM): Tailored Formation of Multiple Reinforcing Phases and its Mechanisms. In: Laser Additive Manufacturing of High-Performance Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46089-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46089-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46088-7

  • Online ISBN: 978-3-662-46089-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics