Skip to main content

Novel Ti-Based Nanocomposites by Selective Laser Melting (SLM) Additive Manufacturing (AM): Tailored Nanostructure and Performance

  • Chapter
  • First Online:
  • 6912 Accesses

Abstract

Selective laser melting (SLM) additive manufacturing (AM) process was used to produce nanocrystalline TiC-reinforced Ti matrix bulk-form nanocomposites. The influences of laser energy density on densification activity, microstructural feature, nanohardness, and wear behavior of SLM-processed parts were comprehensibly studied to improve the controllability SLM process of nanomaterials. The TiC reinforcement in SLM-processed nanocomposites typically had a unique nanoscale lamellar structure, which was distinctly different from the initial particulate morphology before SLM. Reasonable physical mechanisms and conditions for the formation of TiC nanostructure reinforcing phase during SLM process were proposed. The microstructural and mechanical properties of SLM-processed TiC/Ti nanocomposite parts were sensitive to the preparation method of the starting nanocomposite powder and the content of TiC nanoparticles. The optimally processed TiC/Ti nanocomposite parts by SLM demonstrated the significantly elevated microhardness and wear performance as relative to the unreinforced Ti parts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Das M, Balla VK, Basu D et al (2010) Laser processing of SiC–particle–reinforced coating on titanium. Scripta Mater 63(4):438–441

    Article  Google Scholar 

  2. da Silva AAM, dos Santos JF, Strohaecker TR (2005) Microstructural and mechanical characterisation of a Ti6Al4V/TiC/10p composite processed by the BE–CHIP method. Compos Sci Technol 65(11–12):1749–1755

    Article  Google Scholar 

  3. Das M, Balla VK, Basu D et al (2012) Laser processing of in situ synthesized TiB–TiN–reinforced Ti6Al4V alloy coatings. Scripta Mater 66(8):578–581

    Article  Google Scholar 

  4. Pei YT, Ocelik V, De Hosson JTM et al (2002) SiCp/Ti6Al4V functionally graded materials produced by laser melt injection. Acta Mater 50(8):2035–2051

    Article  Google Scholar 

  5. Majumdar JD, Li L (2010) Development of titanium boride (TiB) dispersed titanium (Ti) matrix composite by direct laser cladding. Mater Lett 64(9):1010–1012

    Article  Google Scholar 

  6. Pang W, Man HC, Yue TM (2005) Laser surface coating of Mo–WC metal matrix composite on Ti6Al4V alloy. Mater Sci Eng A 390(1–2):144–153

    Article  Google Scholar 

  7. Kondoh K, Threrujirapapong T, Imai H et al (2009) Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi–wall carbon nanotubes. Compos Sci Technol 69(7–8):1077–1081

    Article  Google Scholar 

  8. Lu WJ, Xiao L, Geng K et al (2008) Growth mechanism of in situ synthesized TiBw in titanium matrix composites prepared by common casting technique. Mater Charact 59(7):912–919

    Article  Google Scholar 

  9. Poletti C, Balog M, Schubert T et al (2008) Production of titanium matrix composites reinforced with SiC particles. Compos Sci Technol 68(9):2171–2177

    Article  Google Scholar 

  10. Vreeling JA, Ocelík V, De Hosson JTM (2002) Ti–6Al–4 V strengthened by laser melt injection of WCp particles. Acta Mater 50(19):4913–4924

    Article  Google Scholar 

  11. Llorca J (2002) Fatigue of particle– and whisker–reinforced metal–matrix composites. Prog Mater Sci 47(3):283–353

    Article  MathSciNet  Google Scholar 

  12. Tjong SC (2007) Novel nanoparticle–reinforced metal matrix composites with enhanced mechanical properties. Adv Eng Mater 9(8):639–652

    Article  Google Scholar 

  13. Mortensen A, Llorca J (2010) Metal matrix composites. Annu Rev Mater Res 40:243–270

    Article  Google Scholar 

  14. Kumar SK, Krishnamoorti R (2010) Nanocomposites: structure, phase behavior, and properties. Annu Rev Chem Biomol Eng 1:37–58

    Article  Google Scholar 

  15. Moya JS, Lopez–Esteban S, Pecharromán C (2007) The challenge of ceramic/metal microcomposites and nanocomposites. Prog Mater Sci 52(7):1017–1090

    Article  Google Scholar 

  16. Ajayan PM, Schadler LS, Braun PV (eds) (2003) Nanocomposite science and technology. Wiley–VCH, Weinheim

    Book  Google Scholar 

  17. Simchi A (2006) Direct laser sintering of metal powders: mechanism, kinetics and microstructural features. Mater Sci Eng A 428(1–2):148–158

    Article  Google Scholar 

  18. Gu DD, Hagedorn YC, Meiners W et al (2011) Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by selective laser melting (SLM): densification, growth mechanism and wear behavior. Compos Sci Technol 71(13):1612–1620

    Article  Google Scholar 

  19. von Walter M, Hollander DA, Wirtz T et al (2006) Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4 V produced by direct laser forming. Biomaterials 27(7):955–963

    Article  Google Scholar 

  20. Oliver Seely Jr (2000) Density and Archimedes’ Principle. http://www.csudh.edu/oliver/satcoll/archmede.htm. Accessed 10 Mar 2015

  21. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  Google Scholar 

  22. Takamichi I, Roderick ILG (eds) (1993) The physical properties of liquid metals. Clarendon Press, Oxford

    Google Scholar 

  23. Simchi A, Pohl H (2003) Effects of laser sintering processing parameters on the microstructure and densification of iron powder. Mater Sci Eng A 359(1–2):119–128

    Article  Google Scholar 

  24. Semak VV, Knorovsky GA, MacCallum DO et al (2006) Effect of surface tension on melt pool dynamics during laser pulse interaction. J Phys D 39(3):590–595

    Article  Google Scholar 

  25. Zhang W, Sui ML, Zhou YH et al (2003) Electropulsing–induced evolution of microstructures in materials. Acta Metall Sin 39(10):1009–1018

    Google Scholar 

  26. Arafune K, Hirata A (1999) Thermal and solutal Marangoni convection in In–Ga–Sb system. J Cryst Growth 197(4):811–817

    Article  Google Scholar 

  27. Chan YT, Choi SK (1992) Numerical simulations of inductive–heated float–zone growth. J Appl Phys 72(8):3741–3749

    Article  Google Scholar 

  28. Tille J, Kelly JC (1963) The surface tension of liquid titanium. Br J Appl Phys 14(10):717–719

    Article  Google Scholar 

  29. Niu HJ, Chang ITH (1999) Instability of scan tracks of selective laser sintering of high speed steel powder. Scripta Mater 41(11):1229–1234

    Article  Google Scholar 

  30. Kruth JP, Levy G, Klocke F et al (2007) Consolidation phenomena in laser and powder–bed based layered manufacturing. CIRP Ann Manuf Technol 56(2):730–759

    Article  Google Scholar 

  31. Gu DD, Hagedorn YC, Meiners W et al (2012) Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater 60(9):3849–3860

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Gu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gu, D. (2015). Novel Ti-Based Nanocomposites by Selective Laser Melting (SLM) Additive Manufacturing (AM): Tailored Nanostructure and Performance. In: Laser Additive Manufacturing of High-Performance Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46089-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46089-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46088-7

  • Online ISBN: 978-3-662-46089-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics