Skip to main content

Introduction

  • Chapter
  • First Online:
Silver Nanoparticles in the Environment

Abstract

Due to their unique physical and chemical properties, silver nanoparticles (AgNPs) are extensively used in electronics, catalysts, biosensors, medical areas, and large commercial antibacterial products, which has paralleled growing public and regulatory concerns as to the potential risks they may pose to humans and the environmental organisms. Aiming to give a brief introduction of AgNPs, this chapter describes the history, general physical and chemical properties, main applications, as well as environmental concerns of AgNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wadhera A, Fung M (2005) Systemic argyria associated with ingestion of colloidal silver. Dermatol Online J 11(1):12.

    Google Scholar 

  2. Klasen HJ (2000) Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26(2):117–130. doi:10.1016/s0305-4179(99)00108-4

    Article  CAS  Google Scholar 

  3. Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370. doi:10.1016/S0079-6468(08)70024-9

    Article  CAS  Google Scholar 

  4. Klasen HJ (2000) A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 26(2):131–138. doi:10.1016/s0305-4179(99)00116-3

    Article  CAS  Google Scholar 

  5. Drake PL, Hazelwood KJ (2005) Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg 49(7):575–585. doi:10.1093/annhyg/mei019

    Article  CAS  Google Scholar 

  6. Luoma SN (2008) Silver nanotechnologies and the environment: old problems or new challenges? Woodrow Wilson International Center for Scholars, Washington, DC

    Google Scholar 

  7. Nowack B, Krug H, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45(7):3189–3189. doi:10.1021/es103316q

    Article  CAS  Google Scholar 

  8. Lea MC (1889) On allotropic forms of silver. Am J Sci 37:476–491

    Article  Google Scholar 

  9. Paal C (1902) On colloidal silver. Berichte Der Deutschen Chemischen Gesellschaft 35:2224–2236. doi:10.1002/cber.190203502182

    Article  CAS  Google Scholar 

  10. Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48(2):173–179. doi:10.1111/j.1472-765X.2008.02510.x

    Article  CAS  Google Scholar 

  11. Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24(1):135–141. doi:10.1007/s10534-010-9381-6

    Article  CAS  Google Scholar 

  12. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3(2):168–171. doi:10.1016/j.nano.2007.02.001

    Article  CAS  Google Scholar 

  13. Lara HH, Ayala-Nunez NV, Turrent LDI, Padilla CR (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26(4):615–621. doi:10.1007/s11274-009-0211-3

    Article  CAS  Google Scholar 

  14. Wright JB, Lam K, Hansen D, Burrell RE (1999) Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control 27(4):344–350. doi:10.1016/S0196-6553(99)70055-6

    Article  CAS  Google Scholar 

  15. Sun RWY, Chen R, Chung NPY, Ho CM, Lin CLS, Che CM (2005) Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem Commun (40):5059–5061. doi:10.1039/b510984a

    Google Scholar 

  16. Lu L, Sun RWY, Chen R, Hui CK, Ho CM, Luk JM, Lau GKK, Che CM (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther 13(2):253–262

    CAS  Google Scholar 

  17. Baram-Pinto D, Shukla S, Perkas N, Gedanken A, Sarid R (2009) Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug Chem 20(8):1497–1502. doi:10.1021/bc900215b

    Article  CAS  Google Scholar 

  18. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720. doi:10.1128/aem.02218-06

    Article  CAS  Google Scholar 

  19. El Badawy AM Silva RG Morris B Scheckel KG Suidan MT Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45(1):283–287. doi:10.1021/es1034188

    Article  CAS  Google Scholar 

  20. Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408(5):999–1006. doi:10.1016/j.scitotenv.2009.11.003

    Article  CAS  Google Scholar 

  21. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176(1):1–12. doi:10.1016/j.toxlet.2007.10.004

    Article  CAS  Google Scholar 

  22. http://www.nanotechproject.org/cpi/about/analysis/. Accessed 10 Dec 2014

  23. Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28(11):580–588. doi:10.1016/j.tibtech.2010.07.006

    Article  CAS  Google Scholar 

  24. Wijnhoven SWP, Peijnenburg W, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Van de Meent D, Dekkers S, De Jong WH, Van Zijverden M, Sips A, Geertsma RE (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3(2):109–138. doi:10.1080/17435390902725914

    Article  CAS  Google Scholar 

  25. Ye Q, Zhao JS, Huo FF, Wang J, Cheng SY, Kang TF, Dai HX (2011) Nanosized Ag/alpha-MnO(2) catalysts highly active for the low-temperature oxidation of carbon monoxide and benzene. Catal Today 175(1):603–609. doi:10.1016/j.cattod.2011.04.008

    Article  CAS  Google Scholar 

  26. Ai LH, Zeng CM, Wang QM (2011) One-step solvothermal synthesis of Ag-Fe(3)O(4) composite as a magnetically recyclable catalyst for reduction of Rhodamine B. Catal Commun 14(1):68–73. doi:10.1016/j.catcom.2011.07.014

    Article  CAS  Google Scholar 

  27. Naik B, Hazra S, Prasad VS, Ghosh NN (2011) Synthesis of Ag nanoparticles within the pores of SBA-15: an efficient catalyst for reduction of 4-nitrophenol. Catal Commun 12(12):1104–1108. doi:10.1016/j.catcom.2011.03.028

    Article  CAS  Google Scholar 

  28. Manesh KM, Gopalan AI, Lee KP, Komathi S (2010) Silver nanoparticles distributed into polyaniline bridged silica network: a functional nanocatalyst having synergistic influence for catalysis. Catal Commun 11(10):913–918. doi:10.1016/j.catcom.2010.03.013

    Article  CAS  Google Scholar 

  29. Tate J, Rogers JA, Jones CDW, Vyas B, Murphy DW, Li WJ, Bao ZA, Slusher RE, Dodabalapur A, Katz HE (2000) Anodization and microcontact printing on electroless silver: solution-based fabrication procedures for low-voltage electronic systems with organic active components. Langmuir 16(14):6054–6060. doi:10.1021/la991646b

    Article  CAS  Google Scholar 

  30. Li YN, Wu YL, Ong BS (2005) Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. J Am Chem Soc 127(10):3266–3267. doi:10.1021/ja043425k

    Article  CAS  Google Scholar 

  31. Qian XM, Nie SM (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37(5):912–920. doi:10.1039/b708839f

    Article  CAS  Google Scholar 

  32. Cao YWC, Jin RC, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540. doi:10.1126/science.297.5586.1536

    Article  CAS  Google Scholar 

  33. Zhang M, Ye B-C (2011) Colorimetric chiral recognition of enantiomers using the nucleotide-capped silver nanoparticles. Anal Chem 83(5):1504–1509. doi:10.1021/ac102922f

    Article  CAS  Google Scholar 

  34. Ozyurek M, Gungor N, Baki S, Guclu K, Apak R (2012) Development of a silver nanoparticle-based method for the antioxidant capacity measurement of polyphenols. Anal Chem 84(18):8052–8059. doi:10.1021/ac301925b

    Article  CAS  Google Scholar 

  35. Roy B, Bairi P, Nandi AK (2011) Selective colorimetric sensing of mercury(II) using turn off-turn on mechanism from riboflavin stabilized silver nanoparticles in aqueous medium. Analyst 136(18):3605–3607. doi:10.1039/c1an15459a

    Article  CAS  Google Scholar 

  36. Wei H, Chen C, Han B, Wang E (2008) Enzyme colorimetric assay using unmodified silver nanoparticles. Anal Chem 80(18):7051–7055. doi:10.1021/ac801144t

    Article  CAS  Google Scholar 

  37. Chen S, Hai X, Chen XW, Wang JH (2014) In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose. Anal Chem 86(13):6689–6694. doi:10.1021/ac501497d

    Article  CAS  Google Scholar 

  38. Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XHN (2007) In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1(2):133–143. doi:10.1021/nn700048y

    Article  CAS  Google Scholar 

  39. Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47(2):1082–1090. doi:10.1021/es302973y

    Article  CAS  Google Scholar 

  40. Yin LY, Cheng YW, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45(6):2360–2367. doi:10.1021/es103995x

    Article  CAS  Google Scholar 

  41. Lee W-M, Kwak JI, An Y-J (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86(5):491–499. doi:10.1016/j.chemosphere.2011.10.013

    Article  CAS  Google Scholar 

  42. Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407(19):5243–5246. doi:10.1016/j.scitotenv.2009.06.024

    Article  CAS  Google Scholar 

  43. Piccapietra F, Allue CG, Sigg L, Behra R (2012) Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate coated silver nanoparticles and silver nitrate. Environ Sci Technol 46(13):7390–7397. doi:10.1021/es300734m

    Article  CAS  Google Scholar 

  44. Garcia-Aonso J, Khan FR, Misra SK, Turmaine M, Smith BD, Rainbow PS, Luoma SN, Valsami-Jones E (2011) Cellular internalization of silver nanoparticles in gut epithelia of the estuarine polychaete Nereis diversicolor. Environ Sci Technol 45(10):4630–4636. doi:10.1021/es2005122

    Article  Google Scholar 

  45. Croteau MN, Misra SK, Luoma SN, Valsami-Jones E (2011) Silver bioaccumulation dynamics in a freshwater invertebrate after aqueous and dietary exposures to nanosized and ionic Ag. Environ Sci Technol 45(15):6600–6607. doi:10.1021/es200880c

    Article  CAS  Google Scholar 

  46. Pokhrel LR, Dubey B (2012) Potential impact of low-concentration silver nanoparticles on predator-prey interactions between predatory dragonfly nymphs and Daphnia magna as a prey. Environ Sci Technol 46(14):7755–7762. doi:10.1021/es204055c

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingfu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, S., Liu, J. (2015). Introduction. In: Liu, J., Jiang, G. (eds) Silver Nanoparticles in the Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46070-2_1

Download citation

Publish with us

Policies and ethics