Skip to main content

Transition-Metal Complexes for Triplet–Triplet Annihilation-Based Energy Upconversion

  • Chapter
Organometallics and Related Molecules for Energy Conversion

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

In recent years, significant progress has been achieved in the field of triplet–triplet annihilation (TTA)-based energy upconversion, in which transition-metal complexes as the sensitizers play a key role. These complexes are different from organic fluorophores because the triplet excited states, instead of the singlet excited states, are populated with a high intersystem crossing (ISC) efficiency upon photoexcitation. Meanwhile, the long-lived triplet excited states in the microsecond range are observed for these complexes. All these properties are favorable when transition-metal complexes, including Ir(III), Pd(II), Pt(II), Ru(II), Zn(II), Re(I), Cu(I), and Au(III) complexes summarized herein, are used as sensitizers for TTA upconversion. Moreover, some examples of organic sensitizers and the applications of TTA upconversion systems are also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schulze TF, Czolk J, Cheng YY, Fückel B, MacQueen RW, Khoury T, Crossley MJ, Stannowski B, Lips K, Lemmer U, Colsmann A, Schmidt TW (2012) Efficiency enhancement of organic and thin-film silicon solar cells with photochemical upconversion. J Phys Chem C 116:22794–22801

    Article  Google Scholar 

  2. Zhang Y, Hong Z (2013) Synthesis of lanthanide-doped NaYF4@TiO2 core-shell composites with highly crystalline and tunable TiO2 shells under mild conditions and their upconversion-based photocatalysis. Nanoscale 5:8930–8933

    Article  Google Scholar 

  3. Zhou J, Liu Z, Li F (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41:1323–1349

    Article  Google Scholar 

  4. Liu Y, Chen M, Cao T, Sun Y, Li C, Liu Q, Yang T, Yao L, Feng W, Li F (2013) A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury. J Am Chem Soc 135:9869–9876

    Article  Google Scholar 

  5. Kim HM, Cho BR (2009) Two-photon probes for intracellular free metal ions, acidic vesicles, and lipid rafts in live tissues. Acc Chem Res 42:863–872

    Article  Google Scholar 

  6. Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X, Liu X (2011) Tuning upconversion through energy migration in core-shell nanoparticles. Nat Mater 10:968–973

    Article  Google Scholar 

  7. Singh-Rachford TN, Castellano FN (2010) Photon upconversion based on sensitized triplet–triplet annihilation. Coord Chem Rev 254:2560–2573

    Article  Google Scholar 

  8. Zhu MQ, Zhang GF, Li C, Aldred MP, Chang E, Drezek RA, Li ADQ (2011) Reversible two-photon photoswitching and two-photon imaging of immunofunctionalized nanoparticles targeted to cancer cells. J Am Chem Soc 133:365–372

    Article  Google Scholar 

  9. Wang F, Liu X (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38:976–989

    Article  Google Scholar 

  10. Parker CA, Hatchard CG (1962) Sensitised anti-Stokes delayed fluorescence. Proc Chem Soc 386–387

    Google Scholar 

  11. Zhao J, Ji S, Guo H (2011) Triplet–triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields. RSC Adv 1:937–950

    Article  Google Scholar 

  12. Monguzzi A, Tubino R, Meinardi F (2008) Upconversion-induced delayed fluorescence in multicomponent organic systems: role of Dexter energy transfer. Phys Rev B 77:155122

    Article  Google Scholar 

  13. Ceroni P (2011) Energy up-conversion by low-power excitation: new applications of an old concept. Chem Eur J 17:9560–9564

    Article  Google Scholar 

  14. Cheng YY, Khoury T, Clady RGCR, Tayebjee MJY, Ekins-Daukes NJ, Crossley MJ, Schmidt TW (2010) On the efficiency limit of triplet-triplet annihilation for photochemical upconversion. Phys Chem Chem Phys 12:66–71

    Article  Google Scholar 

  15. Monguzzi A, Tubino R, Hoseinkhani S, Campione M, Meinardi F (2012) Low power, non-coherent sensitized photon up-conversion: modelling and perspectives. Phys Chem Chem Phys 14:4322–4332

    Article  Google Scholar 

  16. Saltiel J, Atwater BW (1988) Spin-statistical factors in diffusion-controlled reactions. Adv Photochem 14:1–90

    Google Scholar 

  17. Saltiel J, Marchand GR, Smothers WK, Stout SA, Charlton JL (1981) Concerning the spin-statistical factor in the triplet-triplet annihilation of anthracene triplets. J Am Chem Soc 103:7159–7164

    Article  Google Scholar 

  18. Simon YC, Weder C (2012) Low-power photon upconversion through triplet–triplet annihilation in polymers. J Mater Chem 22:20817–20830

    Article  Google Scholar 

  19. Bachilo SM, Weisman RB (2000) Determination of triplet quantum yields from triplet–triplet annihilation fluorescence. J Phys Chem A 104:7711–7714

    Article  Google Scholar 

  20. Liu L, Huang D, Draper SM, Yi X, Wu W, Zhao J (2013) Visible light-harvesting trans bis(alkylphosphine) platinum(II)-alkynyl complexes showing long-lived triplet excited states as triplet photosensitizers for triplet-triplet annihilation upconversion. Dalton Trans 42:10694–10706

    Article  Google Scholar 

  21. Zhao W, Castellano FN (2006) Upconverted emission from pyrene and di-tert-butylpyrene using Ir(ppy)3 as triplet sensitizer. J Phys Chem A 110:11440–11445

    Article  Google Scholar 

  22. Sun JF, Wu W, Guo H, Zhao J (2011) Visible-light harvesting with cyclometalated iridium(III) complexes having long-lived 3IL excited states and their application in triplet–triplet-annihilation based upconversion. Eur J Inorg Chem (21):3165–3173

    Google Scholar 

  23. Sun J, Zhao J, Guo H, Wu W (2012) Visible-light harvesting iridium complexes as singlet oxygen sensitizers for photooxidation of 1,5-dihydroxynaphthalene. Chem Commun 48:4169–4171

    Article  Google Scholar 

  24. Sun J, Wu W, Zhao J (2012) Long-lived room-temperature deep-red-emissive intraligand triplet excited state of naphthalimide in cyclometalated IrIII complexes and its application in triplet-triplet annihilation-based upconversion. Chem Eur J 18:8100–8112

    Article  Google Scholar 

  25. Ma L, Guo H, Li Q, Guo S, Zhao J (2012) Visible light-harvesting cyclometalated Ir(III) complexes as triplet photosensitizers for triplet–triplet annihilation based upconversion. Dalton Trans 41:10680–10689

    Article  Google Scholar 

  26. Yi X, Yang P, Huang D, Zhao J (2013) Visible light-harvesting cyclometalated Ir(III) complexes with pyreno[4,5-d]imidazole C^N ligands as triplet photosensitizers for triplet–triplet annihilation upconversion. Dyes Pigments 96:104–115

    Article  Google Scholar 

  27. Sun J, Zhong F, Yi X, Zhao J (2013) Efficient enhancement of the visible-light absorption of cyclometalated Ir(III) complexes triplet photosensitizers with Bodipy and applications in photooxidation and triplet-triplet annihilation upconversion. Inorg Chem 52:6299–6310

    Article  Google Scholar 

  28. Ma L, Guo S, Sun J, Zhang C, Zhao J, Guo H (2013) Green light-excitable naphthalenediimide acetylide-containing cyclometalated Ir(III) complex with long-lived triplet excited states as triplet photosensitizers for triplet–triplet annihilation upconversion. Dalton Trans 42:6478–6488

    Article  Google Scholar 

  29. Baluschev S, Miteva T, Yakutkin V, Nelles G, Yasuda A, Wegner G (2006) Up-conversion fluorescence: noncoherent excitation by sunlight. Phys Rev Lett 97:143903

    Article  Google Scholar 

  30. Baluschev S, Yakutkin V, Wegner G, Miteva T, Nelles G, Yasuda A, Chernov S, Aleshchenkov S, Cheprakov A (2007) Upconversion with ultrabroad excitation band: simultaneous use of two sensitizers. Appl Phys Lett 90:181103

    Article  Google Scholar 

  31. Baluschev S, Yakutkin V, Miteva T, Avlasevich Y, Chernov S, Aleshchenkov S, Nelles G, Cheprakov A, Yasuda A, Müllen K, Wegner G (2007) Blue-green up-conversion: noncoherent excitation by NIR light. Angew Chem Int Ed 46:7693–7696

    Article  Google Scholar 

  32. Baluschev S, Yakutkin V, Miteva T, Wegner G, Roberts T, Nelles G, Yasuda A, Chernov S, Aleshchenkov S, Cheprakov A (2008) A general approach for non-coherently excited annihilation up-conversion: transforming the solar-spectrum. New J Phys 10:013007

    Article  Google Scholar 

  33. Deng F, Blumhoff J, Castellano FN (2013) Annihilation limit of a visible-to-UV photon upconversion composition ascertained from transient absorption kinetics. J Phys Chem A 117:4412–4419

    Article  Google Scholar 

  34. Singh-Rachford TN, Castellano FN (2008) Pd(II) phthalocyanine-sensitized triplet-triplet annihilation from rubrene. J Phys Chem A 112:3550–3556

    Article  Google Scholar 

  35. Yakutkin V, Aleshchenkov S, Chernov S, Miteva T, Nelles G, Cheprakov A, Baluschev S (2008) Towards the IR limit of the triplet-triplet annihilation-supported up-conversion: tetraanthraporphyrin. Chem Eur J 14:9846–9850

    Article  Google Scholar 

  36. Borisov SM, Saf R, Fischer R, Klimant I (2013) Synthesis and properties of new phosphorescent red light-excitable platinum(II) and palladium(II) complexes with Schiff bases for oxygen sensing and triplet-triplet annihilation-based upconversion. Inorg Chem 52:1206–1216

    Article  Google Scholar 

  37. Wohnhaas C, Friedemann K, Busko D, Landfester K, Baluschev S, Crespy D, Turshatov A (2013) All organic nanofibers as ultralight versatile support for triplet–triplet annihilation upconversion. ACS Macro Lett 2:446–450

    Article  Google Scholar 

  38. Nattestad A, Cheng YY, MacQueen RW, Schulze TF, Thompson FW, Mozer AJ, Fückel B, Khoury T, Crossley MJ, Lips K, Wallace GG, Schmidt TW (2013) Dye-sensitized solar cell with integrated triplet–triplet annihilation upconversion system. J Phys Chem Lett 4:2073–2078

    Article  Google Scholar 

  39. Keivanidis PE, Baluschev S, Miteva T, Nelles G, Scherf U, Yasuda A, Wegner G (2003) Up-conversion photoluminescence in polyfluorene doped with metal(II)-octaethyl porphyrins. Adv Mater 15:2095–2098

    Article  Google Scholar 

  40. Islangulov RR, Lott J, Weder C, Castellano FN (2007) Noncoherent low-power upconversion in solid polymer films. J Am Chem Soc 129:12652–12653

    Article  Google Scholar 

  41. Singh-Rachford TN, Lott J, Weder C, Castellano FN (2009) Influence of temperature on low-power upconversion in rubbery polymer blends. J Am Chem Soc 131:12007–12014

    Article  Google Scholar 

  42. Baluschev S, Yu F, Miteva T, Ahl S, Yasuda A, Nelles G, Knoll W, Wegner G (2005) Metal-enhanced up-conversion fluorescence: effective triplet-triplet annihilation near silver surface. Nano Lett 5:2482–2484

    Article  Google Scholar 

  43. Baluschev S, Keivanidis PE, Wegner G, Jacob J, Grimsdale AC, Müllen K, Miteva T, Yasuda A, Nelles G (2005) Upconversion photoluminescence in poly(ladder-type-pentaphenylene) doped with metal(II)-octaethyl porphyrins. Appl Phys Lett 86:061904

    Article  Google Scholar 

  44. Laquai F, Wegner G, Im C, Büsing A, Heun S (2005) Efficient upconversion fluorescence in a blue-emitting spirobifluorene-anthracene copolymer doped with low concentrations of Pt(II)octaethylporphyrin. J Chem Phys 123:074902

    Article  Google Scholar 

  45. Tanaka K, Inafuku K, Chujo Y (2010) Environment-responsive upconversion based on dendrimer-supported efficient triplet-triplet annihilation in aqueous media. Chem Commun 46:4378–4380

    Article  Google Scholar 

  46. Singh-Rachford TN, Haefele A, Ziessel R, Castellano FN (2008) Boron dipyrromethene chromophores: next generation triplet acceptors/annihilators for low power upconversion schemes. J Am Chem Soc 130:16164–16165

    Article  Google Scholar 

  47. Singh-Rachford TN, Castellano FN (2009) Supra-nanosecond dynamics of a red-to-blue photon upconversion system. Inorg Chem 48:2541–2548

    Article  Google Scholar 

  48. Singh-Rachford TN, Castellano FN (2010) Triplet sensitized red-to-blue photon upconversion. J Phys Chem Lett 1:195–200

    Article  Google Scholar 

  49. Borisov SM, Larndorfer C, Klimant I (2012) Triplet-triplet annihilation-based anti-Stokes oxygen sensing materials with a very broad dynamic range. Adv Funct Mater 22:4360–4368

    Article  Google Scholar 

  50. Deng F, Sommer JR, Myahkostupov M, Schanze KS, Castellano FN (2013) Near-IR phosphorescent metalloporphyrin as a photochemical upconversion sensitizer. Chem Commun 49:7406–7408

    Article  Google Scholar 

  51. Sun H, Guo H, Wu W, Liu X, Zhao J (2011) Coumarin phosphorescence observed with N^N Pt(II) bisacetylide complex and its applications for luminescent oxygen sensing and triplet-triplet-annihilation based upconversion. Dalton Trans 40:7834–7841

    Article  Google Scholar 

  52. Liu Y, Wu W, Zhao J, Zhang X, Guo H (2011) Accessing the long-lived near-IR-emissive triplet excited state in naphthalenediimide with light-harvesting diimine platinum(II) bisacetylide complex and its application for upconversion. Dalton Trans 40:9085–9089

    Article  Google Scholar 

  53. Huang L, Zeng L, Guo H, Wu W, Wu W, Ji S, Zhao J (2011) Room-temperature long-lived 3IL excited state of rhodamine in an N^N PtII bis(acetylide) complex with intense visible-light absorption. Eur J Inorg Chem (29):4527–4533

    Google Scholar 

  54. Liu Y, Li Q, Zhao J, Guo H (2012) BF2-bound chromophore-containing N^N Pt(II) bisacetylide complex and its applications as sensitizer for triplet-triplet annihilation based upconversion. RSC Adv 2:1061–1067

    Article  Google Scholar 

  55. Ji S, Wu W, Zhao J, Guo H, Wu W (2012) Efficient triplet-triplet annihilation upconversion with Platinum(II) bis(arylacetylide) complexes that show long-lived triplet excited states. Eur J Inorg Chem (19):3183–3190

    Google Scholar 

  56. Wu W, Zhao J, Wu W, Chen Y (2012) Room temperature long-lived triplet excited state of fluorescein in N^N Pt(II) bisacetylide complex and its applications for triplet–triplet annihilation based upconversions. J Organomet Chem 713:189–196

    Article  Google Scholar 

  57. Li Q, Guo H, Ma L, Wu W, Liu Y, Zhao J (2012) Tuning the photophysical properties of N^N Pt(II) bisacetylide complexes with fluorene moiety and its applications for triplet–triplet-annihilation based upconversion. J Mater Chem 22:5319–5329

    Article  Google Scholar 

  58. Guo H, Li Q, Ma L, Zhao J (2012) Fluorene as π-conjugation linker in N^N Pt(II) bisacetylide complexes and their applications for triplet–triplet annihilation based upconversion. J Mater Chem 22:15757–15768

    Article  Google Scholar 

  59. Wu W, Wu W, Ji S, Guo H, Zhao J (2011) Accessing the long-lived emissive 3IL triplet excited states of coumarin fluorophores by direct cyclometallation and its application for oxygen sensing and upconversion. Dalton Trans 40:5953–5963

    Article  Google Scholar 

  60. Wu W, Guo H, Wu W, Ji S, Zhao J (2011) Long-lived room temperature deep-red/near-IR emissive intraligand triplet excited state (3IL) of naphthalimide in cyclometalated platinum(II) complexes and its application in upconversion. Inorg Chem 50:11446–11460

    Article  Google Scholar 

  61. Wu W, Sun J, Ji S, Wu W, Zhao J, Guo H (2011) Tuning the emissive triplet excited states of platinum(II) Schiff base complexes with pyrene, and application for luminescent oxygen sensing and triplet-triplet-annihilation based upconversions. Dalton Trans 40:11550–11561

    Article  Google Scholar 

  62. Du P, Eisenberg R (2010) Energy upconversion sensitized by a platinum(II) terpyridyl acetylide complex. Chem Sci 1:502–506

    Article  Google Scholar 

  63. Wu W, Zhao J, Guo H, Sun J, Ji S, Wang Z (2012) Long-lived room-temperature near-IR phosphorescence of BODIPY in a visible-light-harvesting N^C^N Pt(II)-acetylide complex with a directly metalated BODIPY chromophore. Chem Eur J 18:1961–1968

    Article  Google Scholar 

  64. Wu W, Huang D, Yi X, Zhao J (2013) Tridentate cyclometalated platinum(II) complexes with strong absorption of visible light and long-lived triplet excited states as photosensitizers for triplet–triplet annihilation upconversion. Dyes Pigments 96:220–231

    Article  Google Scholar 

  65. Wu W, Zhao J, Sun J, Huang L, Yi X (2013) Red-light excitable fluorescent platinum(II) bis(aryleneethynylene) bis(trialkylphosphine) complexes showing long-lived triplet excited states as triplet photosensitizers for triplet-triplet annihilation upconversion. J Mater Chem C 1:705–716

    Article  Google Scholar 

  66. Kozlov DV, Castellano FN (2004) Anti-Stokes delayed fluorescence from metal-organic bichromophores. Chem Commun (24):2860–2861

    Google Scholar 

  67. Islangulov RR, Kozlov DV, Castellano FN (2005) Low power upconversion using MLCT sensitizers. Chem Commun (30):3776–3778

    Google Scholar 

  68. Singh-Rachford TN, Islangulov RR, Castellano FN (2008) Photochemical upconversion approach to broad-band visible light generation. J Phys Chem A 112:3906–3910

    Article  Google Scholar 

  69. Singh-Rachford TN, Castellano FN (2009) Nonlinear photochemistry squared: quartic light power dependence realized in photon upconversion. J Phys Chem A 113:9266–9269

    Article  Google Scholar 

  70. Ji S, Wu W, Wu W, Guo H, Zhao J (2011) Ruthenium(II) polyimine complexes with a long-lived 3IL excited state or a 3MLCT/3IL equilibrium: efficient triplet sensitizers for low-power upconversion. Angew Chem Int Ed 50:1626–1629

    Article  Google Scholar 

  71. Ji S, Guo H, Wu W, Wu W, Zhao J (2011) Ruthenium(II) polyimine-coumarin dyad with non-emissive 3IL excited state as sensitizer for triplet-triplet annihilation based upconversion. Angew Chem Int Ed 50:8283–8286

    Article  Google Scholar 

  72. Wu W, Ji S, Wu W, Shao J, Guo H, James TD, Zhao J (2012) Ruthenium(II)-polyimine-coumarin light-harvesting molecular arrays: design rationale and application for triplet-triplet-annihilation-based upconversion. Chem Eur J 18:4953–4964

    Article  Google Scholar 

  73. Wu W, Sun J, Cui X, Zhao J (2013) Observation of the room temperature phosphorescence of Bodipy in visible light-harvesting Ru(II) polyimine complexes and application as triplet photosensitizers for triplet–triplet-annihilation upconversion and photocatalytic oxidation. J Mater Chem C 1:4577–4589

    Article  Google Scholar 

  74. Sugunan SK, Tripathy U, Brunet SMK, Paige MF, Steer RP (2009) Mechanisms of low-power noncoherent photon upconversion in metalloporphyrin organic blue emitter systems in solution. J Phys Chem A 113:8548–8556

    Article  Google Scholar 

  75. Singh-Rachford TN, Nayak A, Muro-Small ML, Goeb S, Therien MJ, Castellano FN (2010) Supermolecular-chromophore-sensitized near-infrared-to-visible photon upconversion. J Am Chem Soc 132:14203–14211

    Article  Google Scholar 

  76. Cui X, Zhao J, Yang P, Sun J (2013) Zinc(II) tetraphenyltetrabenzoporphyrin complex as triplet photosensitizer for triplet-triplet annihilation upconversion. Chem Commun 49:10221–10223

    Article  Google Scholar 

  77. Yi X, Zhao J, Wu W, Huang D, Ji S, Sun J (2012) Rhenium(I) tricarbonyl polypyridine complexes showing strong absorption of visible light and long-lived triplet excited states as a triplet photosensitizer for triplet-triplet annihilation upconversion. Dalton Trans 41:8931–8940

    Article  Google Scholar 

  78. Yi X, Zhao J, Sun J, Guo S, Zhang H (2013) Visible light-absorbing rhenium(I) tricarbonyl complexes as triplet photosensitizers in photooxidation and triplet-triplet annihilation upconversion. Dalton Trans 42:2062–2074

    Article  Google Scholar 

  79. McCusker CE, Castellano FN (2013) Orange-to-blue and red-to-green photon upconversion with a broadband absorbing copper(I) MLCT sensitizer. Chem Commun 49:3537–3539

    Article  Google Scholar 

  80. To WP, Chan KT, Tong GSM, Ma C, Kwok WM, Guan X, Low KH, Che CM (2013) Strongly luminescent gold(III) complexes with long-lived excited states: high emission quantum yields, energy up-conversion, and nonlinear optical properties. Angew Chem Int Ed 52:6648–6652

    Article  Google Scholar 

  81. Koziar JC, Cowan DO (1978) Photochemical heavy-atom effects. Acc Chem Res 11:334–341

    Article  Google Scholar 

  82. Chen HC, Hung CY, Wang KH, Chen HL, Fann WS, Chien FC, Chen P, Chow TJ, Hsu CP, Sun SS (2009) White-light emission from an upconverted emission with an organic triplet sensitizer. Chem Commun (27):4064–4066

    Google Scholar 

  83. Wu W, Guo H, Wu W, Ji S, Zhao J (2011) Organic triplet sensitizer library derived from a single chromophore (BODIPY) with long-lived triplet excited state for triplet-triplet annihilation based upconversion. J Org Chem 76:7056–7064

    Article  Google Scholar 

  84. Chen Y, Zhao J, Xie L, Guo H, Li Q (2012) Thienyl-substituted BODIPYs with strong visible light-absorption and long-lived triplet excited states as organic triplet sensitizers for triplet–triplet annihilation upconversion. RSC Adv 2:3942–3953

    Google Scholar 

  85. Guo S, Wu W, Guo H, Zhao J (2012) Room-temperature long-lived triplet excited states of naphthalenediimides and their applications as organic triplet photosensitizers for photooxidation and triplet-triplet annihilation upconversions. J Org Chem 77:3933–3943

    Article  Google Scholar 

  86. Zhang C, Zhao J, Wu S, Wang Z, Wu W, Ma J, Guo S, Huang L (2013) Intramolecular RET enhanced visible light-absorbing Bodipy organic triplet photosensitizers and application in photooxidation and triplet-triplet annihilation upconversion. J Am Chem Soc 135:10566–10578

    Article  Google Scholar 

  87. El-Sayed MA (1968) The triplet state: its radiative and nonradiative properties. Acc Chem Res 1:8–16

    Article  Google Scholar 

  88. Singh-Rachford TN, Castellano FN (2009) Low power visible-to-UV upconversion. J Phys Chem A 113:5912–5917

    Article  Google Scholar 

  89. Huang D, Sun J, Ma L, Zhang C, Zhao J (2013) Preparation of ketocoumarins as heavy atom-free triplet photosensitizers for triplet-triplet annihilation upconversion. Photochem Photobiol Sci 12:872–882

    Article  Google Scholar 

  90. Wu W, Cui X, Zhao J (2013) Hetero bodipy-dimers as heavy atom-free triplet photosensitizers showing a long-lived triplet excited state for triplet-triplet annihilation upconversion. Chem Commun 49:9009–9011

    Article  Google Scholar 

  91. Wu W, Zhao J, Sun J, Guo S (2012) Light-harvesting fullerene dyads as organic triplet photosensitizers for triplet-triplet annihilation upconversions. J Org Chem 77:5305–5312

    Article  Google Scholar 

  92. Yang P, Wu W, Zhao J, Huang D, Yi X (2012) Using C60-bodipy dyads that show strong absorption of visible light and long-lived triplet excited states as organic triplet photosensitizers for triplet–triplet annihilation upconversion. J Mater Chem 22:20273–20283

    Article  Google Scholar 

  93. Huang D, Zhao J, Wu W, Yi X, Yang P, Ma J (2012) Visible-light-harvesting triphenylamine ethynyl C60-BODIPY dyads as heavy-atom-free organic triplet photosensitizers for triplet-triplet annihilation upconversion. Asian J Org Chem 1:264–273

    Article  Google Scholar 

  94. Guo S, Sun J, Ma L, You W, Yang P, Zhao J (2013) Visible light-harvesting naphthalenediimide (NDI)-C60 dyads as heavy-atom-free organic triplet photosensitizers for triplet–triplet annihilation based upconversion. Dyes Pigments 96:449–458

    Article  Google Scholar 

  95. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519

    Article  Google Scholar 

  96. Cheng YY, Fückel B, MacQueen RW, Khoury T, Clady RGCR, Schulze TF, Ekins-Daukes NJ, Crossley MJ, Stannowski B, Lip K, Schmidt TW (2012) Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion. Energy Environ Sci 5:6953–6959

    Article  Google Scholar 

  97. Wohnhaas C, Turshatov A, Mailänder V, Lorenz S, Baluschev S, Miteva T, Landfester K (2011) Annihilation upconversion in cells by embedding the dye system in polymeric nanocapsules. Macromol Biosci 11:772–778

    Article  Google Scholar 

  98. Liu Q, Yang T, Feng W, Li F (2012) Blue-emissive upconversion nanoparticles for low-power-excited bioimaging in vivo. J Am Chem Soc 134:5390–5397

    Article  Google Scholar 

  99. Liu Q, Yin B, Yang T, Yang Y, Shen Z, Yao P, Li F (2013) A general strategy for biocompatible, high-effective upconversion nanocapsules based on triplet-triplet annihilation. J Am Chem Soc 135:5029–5037

    Article  Google Scholar 

  100. Miteva T, Yakutkin V, Nelles G, Baluschev S (2008) Annihilation assisted upconversion: all-organic, flexible and transparent multicolour display. New J Phys 10:103002

    Article  Google Scholar 

  101. Khnayzer RS, Blumhoff J, Harrington JA, Haefele A, Deng F, Castellano FN (2012) Upconversion-powered photoelectrochemistry. Chem Commun 48:209–211

    Article  Google Scholar 

  102. Kim JH, Kim JH (2012) Encapsulated triplet-triplet annihilation-based upconversion in the aqueous phase for sub-band-gap semiconductor photocatalysis. J Am Chem Soc 134:17478–17481

    Article  Google Scholar 

  103. Jiang Z, Xu M, Li F, Yu Y (2013) Red-light-controllable liquid-crystal soft actuators via low-power excited upconversion based on triplet-triplet annihilation. J Am Chem Soc 135:16446–16453

    Article  Google Scholar 

Download references

Acknowledgments

We thank the National Basic Research Program of China (2012CB933301), the National Natural Science Foundation of China (61274018, 61136003 and 21174064), Program for New Century Excellent Talents in University (NCET-12-0740), the Ministry of Education of China (IRT1148), Natural Science Foundation of Jiangsu Province of China (BM2012010, BK20130038 and BK2012835) and Priority Academic Program Development of Jiangsu Higher Education Institutions (YX03001) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Zhao or Wei Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, X., Yang, T., Liu, S., Zhao, Q., Huang, W. (2015). Transition-Metal Complexes for Triplet–Triplet Annihilation-Based Energy Upconversion. In: Wong, WY. (eds) Organometallics and Related Molecules for Energy Conversion. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46054-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46054-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46053-5

  • Online ISBN: 978-3-662-46054-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics