Skip to main content

First-Row Transition Metal Complexes for the Conversion of Light into Electricity and Electricity into Light

  • Chapter
Organometallics and Related Molecules for Energy Conversion

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Ruthenium and iridium complexes have been widely used as sensitizer for dye-sensitized solar cells (conversion of light into electricity) and as highly phosphorescent emitters for organic electroluminescence (conversion of electricity into light). The high costs and limited availability of these platinoid metals have motivated the search for alternatives based on first-row transition metals. First-row transition metal complexes have also been used as alternatives to existing materials as redox mediator. This chapter provides an overview of such materials used as an active component of the aforementioned devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Dcbpy:

4,4′-dicarboxy-2,2′-bipyridine

DSC:

dye-sensitized solar cell

ff:

fill factor

HOMO:

highest occupied molecular orbitals

IPCE:

incident monochromatic photon-to-current conversion efficiency

iTMCs:

ionic transition metal complexes

Jsc:

short-circuit current

LEC:

light-emitting electrochemical cells

LF:

ligand field

LUMO:

lowest unoccupied molecular orbitals

OLEDs:

organic light-emitting diodes

MLCT:

metal-to-ligand charge transfer

MPCT:

metal-to-particle charge transfer

ppy:

2-phenylpyridine

TADF:

thermally activated delayed fluorescence

TCO:

transparent conductive oxide

Voc:

open-circuit potential

References

  1. http://eia.gov. Accessed 21 Dec 2013

  2. http://econ.worldbank.org/. Accessed 21 Dec 2013

  3. Veltkamp AC, de Wild-Scholten MJ (2006) In: Proceedings of renewable energy conference, 2006, Makuhari, Chiba, Japan, October 2006

    Google Scholar 

  4. Moser J (1887) Notiz über Verstärkung photoelektrischer Ströme durch optische Sensibilisirung. Monatsh Chem 8:373

    Google Scholar 

  5. Gerischer H, Tributsch H (1968) Elektrochemische Untersuchungen zur spektralen Sensibilisierung von ZnO-Einkristallen. Ber Bunsenges Phys Chem 72:437–445

    Google Scholar 

  6. Dare-Edwards MP, Goodenough JB, Hamnett A et al (1980) Sensitisation of semiconducting electrodes with ruthenium-based dyes. Faraday Discuss Chem Soc 70:285–298

    Google Scholar 

  7. Tsuborama H, Matsumura M, Nomura Y et al (1976) Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature 261:402–403

    Google Scholar 

  8. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Google Scholar 

  9. Nazeeruddin MK, De Angelis F, Fantacci S et al (2005) Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J Am Chem Soc 127:16835–16847

    Google Scholar 

  10. Nazeeruddin MK, Baranoff E, Grätzel M (2011) Dye-sensitized solar cells: a brief overview. Sol Energy 85:1172–1178

    Google Scholar 

  11. Hagfeldt A, Boschloo G, Sun L et al (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Google Scholar 

  12. Yella A, Lee HW, Tsao HN et al (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334:629–634

    Google Scholar 

  13. Snaith H (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4:3623–3630

    Google Scholar 

  14. Nazeeruddin MK, Humphry-Baker R, Liska P et al (2003) Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J Phys Chem B 107:8981–8987

    Google Scholar 

  15. Nazeeruddin MK, Kay A, Rodicio I et al (1993) Conversion of light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I-, CN, and SCN) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115:6382–6390

    Google Scholar 

  16. Nazeeruddin MK, Péchy P, Renouard T et al (2003) engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123:1613–1624

    Google Scholar 

  17. Chiba Y, Islam A, Watanabe Y et al (2006) Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn J Appl Phys 45:L638–L640

    Google Scholar 

  18. Bessho T, Yoneda E, Yum JH et al (2009) New paradigm in molecular engineering of sensitizers for solar cell applications. J Am Chem Soc 131:5930–5934

    Google Scholar 

  19. Bomben PG, Robson KCD, Koivisto BD et al (2012) Cyclometalated ruthenium chromophores for the dye-sensitized solar cell. Coord Chem Rev 256:1438–1450

    Google Scholar 

  20. Bozic-Weber B, Constable EC, Housecroft CE (2013) Light harvesting with Earth abundant d-block metals: development of sensitizers in dye-sensitized solar cells (DSCs). Coord Chem Rev 257:3089–3106

    Google Scholar 

  21. Ragoussi ME, Ince M, Torres T (2013) Recent advances in phthalocyanine-based sensitizers for dye-sensitized solar cells. Eur J Org Chem 29:6475–6489

    Google Scholar 

  22. Li LL, Diau EWG (2013) Porphyrin-sensitized solar cells. Chem Soc Rev 42:291–304

    Google Scholar 

  23. Vrachnou E, Vlachopoulos N, Grätzel M (1987) Efficient visible light sensitization of TiO2 by surface complexation with Fe(CN)6 4−. J Chem Soc Chem Commun 12:868–870

    Google Scholar 

  24. Yang M, Thompson DW, Meyer GJ (2000) Dual pathways for TiO2 sensitization by Na2[Fe(bpy)(CN)4]. Inorg Chem 39:3738–3739

    Google Scholar 

  25. Yang M, Thompson DW, Meyer GJ (2002) Charge-transfer studies of iron cyano compounds bound to nanocrystalline TiO2 surfaces. Inorg Chem 41:1254–1262

    Google Scholar 

  26. De Angelis F, Tilocca A, Selloni A (2004) Time-dependent DFT study of [Fe(CN)6]4− sensitization of TiO2 nanoparticles. J Am Chem Soc 126:15024–15025

    Google Scholar 

  27. Ferrere S, Gregg BA (1998) Photosensitization of TiO2 by [FeII(2,2’-bipyridine-4,4’-dicarboxylic acid)2(CN)2]: band selective electron injection from ultra-short-lived excited states. J Am Chem Soc 120:843–844

    Google Scholar 

  28. Ferrere S (2002) New photosensitizers based upon [FeII(L)2(CN)2] and [FeIIL3], where L is substituted 2,2’-bipyridine. Inorg Chim Acta 329:79–92

    Google Scholar 

  29. Bowman DN, Blew JH, Tsuchiya T et al (2013) Elucidating band-selective sensitization in iron(II) polypyridine-TiO2 assemblies. Inorg Chem 52:8621–8628

    Google Scholar 

  30. Alonso-Vante N, Ern V, Chartier P et al (1983) Spectral sensitization of semiconductors by copper(I) complexes in photoelectrochemical systems. Nouv J Chim 7:3–5

    Google Scholar 

  31. Alonso-Vante N, Nierengarten JF, Sauvage JP (1994) Spectral sensitization of large-band-gap semiconductors (thin films and ceramics) by a carboxylated bis(1,10-phenanthroline)copper(I) complex. J Chem Soc Dalton Trans 11:1649–1654

    Google Scholar 

  32. Sakaki S, Kuroki T, Hamada T (2002) Synthesis of a new copper(I) complex, [Cu(tmdcbpy)2] + (tmdcbpy = 4,4’,6,6’-tetramethyl-2,2’-bipyridine-5,5’-dicarboxylic acid), and its application to solar cells. J Chem Soc Dalton Trans 2:840–842

    Google Scholar 

  33. Bessho T, Constable EC, Graetzel M et al (2008) An element of surprise-efficient copper-functionalized dye-sensitized solar cells. Chem Commun 32:3717–3719

    Google Scholar 

  34. Constable EC, Hernandez Redondo A, Housecroft CE et al (2009) Copper(I) complexes of 6,6’-disubstituted 2,2’-bipyridine dicarboxylic acids: new complexes for incorporation into copper-based dye sensitized solar cells (DSCs). Dalton Trans 7:6634–6644

    Google Scholar 

  35. Yuan YJ, Yu ZT, Zhang JY et al (2012) A copper(I) dye-sensitised TiO2-based system for efficient light harvesting and photoconversion of CO2 into hydrocarbon fuel. Dalton Trans 41:9594–9597

    Google Scholar 

  36. Linfoot CL, Richardson P, Hewat TE et al (2010) Substituted [Cu(I)(POP)(bipyridyl)] and related complexes: synthesis, structure, properties and applications to dye-sensitised solar cells. Dalton Trans 39:8945–8956

    Google Scholar 

  37. Bozic-Weber B, Constable EC, Housecroft CE et al (2011) The intramolecular aryl embrace: from light emission to light absorption. Dalton Trans 40:12584–12594

    Google Scholar 

  38. Bozic-Weber B, Chaurin V, Constable EC et al (2012) Exploring copper(I)-based dye-sensitized solar cells: a complementary experimental and TD-DFT investigation. Dalton Trans 41:14157–14169

    Google Scholar 

  39. Lu X, Wei S, Wu CML et al (2001) Can polypyridyl Cu(I)-based complexes provide promising sensitizers for dye-sensitized solar cells? a theoretical insight into Cu(I) versus Ru(II) sensitizers. J Phys Chem C 115:3753–3761

    Google Scholar 

  40. Huang J, Buyukcakir O, Mara MW et al (2012) Highly efficient ultrafast electron injection from the singlet MLCT excited state of copper(I) diimine complexes to TiO2 nanoparticles. Angew Chem Int Ed 51:12711–12715

    Google Scholar 

  41. Boschloo G, Hagfeldt A (2009) Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc Chem Res 42:1819–1826

    Google Scholar 

  42. Kubo W, Kambe S, Nakade S et al (2003) Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes. J Phys Chem B 107:4374–4381

    Google Scholar 

  43. Wang X, Stanbury DM (2006) Oxidation of iodide by a series of Fe(III) complexes in acetonitrile. Inorg Chem 45:3415–3423

    Google Scholar 

  44. Hamann TW, Ondersma JW (2011) Dye-sensitized solar cell redox shuttles. Energy Environ Sci 4:370–381

    Google Scholar 

  45. Tian H, Sun L (2011) Iodine-free redox couples for dye-sensitized solar cells. J Mater Chem 21:10592–10601

    Google Scholar 

  46. Wang M, Grätzel C, Zakeeruddin SM et al (2012) Recent developments in redox electrolytes for dye-sensitized solar cells. Energy Environ Sci 5:9394–9405

    Google Scholar 

  47. Cong J, Yang X, Kloo L, Sun L (2012) Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells. Energy Environ Sci 5:9180–9194

    Google Scholar 

  48. Yu Z, Vlachopoulos N, Gorlov M et al (2011) Liquid electrolytes for dye-sensitized solar cells. Dalton Trans 40:10289–10303

    Google Scholar 

  49. Gregg BA, Pichot F, Ferrere S et al (2001) Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces. J Phys Chem B 105:1422–1429

    Google Scholar 

  50. Hamann TW, Farha OK, Hupp JT (2008) Outer-sphere redox couples as shuttles in dye-sensitized solar cells. Performance enhancement based on photoelectrode modification via atomic layer deposition. J Phys Chem C 112:19756–19764

    Google Scholar 

  51. Daeneke T, Kwon TH, Holmes AB et al (2011) High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nat Chem 3:211–215

    Google Scholar 

  52. Daeneke T, Mozer AJ, Kwon TH et al (2012) Dye regeneration and charge recombination in dye-sensitized solar cells with ferrocene derivatives as redox mediators. Energy Environ Sci 5:7090–7099

    Google Scholar 

  53. Daeneke T, Mozer AJ, Uemura Y et al (2012) Dye regeneration kinetics in dye-sensitized solar cells. J Am Chem Soc 134:16925–16928

    Google Scholar 

  54. Nusbaumer H, Moser JE, Zakeeruddin SM et al (2001) CoII(dbbip)2 2+ complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells. J Phys Chem B 105:10461–10464

    Google Scholar 

  55. Wang H, Sun Z, Zhang Y et al (2014) Charge transport limitations of redox mediators in dye-sensitized solar cells: investigation based on a quasi-linear model. J Phys Chem C 118:60–70

    Google Scholar 

  56. Cameron PJ, Peter LM, Zakeeruddin SM et al (2004) Electrochemical studies of the Co(III)/Co(II)(dbbip)2 redox couple as a mediator for dye-sensitized nanocrystalline solar cells. Coord Chem Rev 248:1447–1453

    Google Scholar 

  57. Sapp SA, Elliott CM, Contado C et al (2002) Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. J Am Chem Soc 124:11215–11222

    Google Scholar 

  58. Liu Y, Jenning JR, Huang Y et al (2011) Cobalt redox mediators for ruthenium-based dye-sensitized solar cells: a combined impedance spectroscopy and near-IR transmittance study. J Phys Chem C 115:18847–18855

    Google Scholar 

  59. Feldt SM, Gibson EA, Gabrielsson E et al (2010) Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. J Am Chem Soc 132:16714–16724

    Google Scholar 

  60. Yum JH, Baranoff E, Kessler F et al (2012) A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nat Commun 3:631

    Google Scholar 

  61. Nakade S, Makimoto Y, Kubo W et al (2005) Roles of electrolytes on charge recombination in dye-sensitized TiO2 solar cells (2): the case of solar cells using cobalt complex redox couples. J Phys Chem B 109:3488–3493

    Google Scholar 

  62. Xie Y, Hamann TW (2013) Fast low-spin cobalt complex redox shuttles for dye-sensitized solar cells. J Phys Chem Lett 4:328–332

    Google Scholar 

  63. Kashif MK, Axelson JC, Duffy NW et al (2012) A new direction in dye-sensitized solar cells redox mediator development: in situ fine-tuning of the cobalt(II)/(III) redox potential through Lewis base interactions. J Am Chem Soc 134:16646–16653

    Google Scholar 

  64. Hattori S, Wada Y, Yanagida S et al (2005) Blue copper model complexes with distorted tetragonal geometry acting as effective electron-transfer mediators in dye-sensitized solar cells. J Am Chem Soc 127:9648–9654

    Google Scholar 

  65. Bai Y, Yu Q, Cai N et al (2011) High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle. Chem Commun 47:4376–4378

    Google Scholar 

  66. Li TC, Spokoyny AM, She C et al (2010) Ni(III)/(IV) Bis(dicarbollide) as a fast, noncorrosive redox shuttle for dye-sensitized solar cells. J Am Chem Soc 132:4580–4582

    Google Scholar 

  67. Spokoyny AM, Li TC, Farha OK et al (2010) Electronic tuning of nickel-based Bis(dicarbollide) redox shuttles in dye-sensitized solar cells. Angew Chem Int Ed 49:5339–5343

    Google Scholar 

  68. Perera IR, Gupta A, Xiang W et al (2014) Introducing manganese complexes as redox mediators for dye-sensitized solar cells. Phys Chem Chem Phys 16:12021–12028

    Google Scholar 

  69. Bernanose A, Comte M, Vouaux P (1953) A new method of emission of light by certain organic compounds. J Chim Phys Phys Chim Biol 50:64–68

    Google Scholar 

  70. Bernanose A, Vouaux P (1953) Organic electroluminescence: type of emission. J Chim Phys Phys Chim Biol 50:261–263

    Google Scholar 

  71. Pope M, Kallmann HP, Magnante P (1963) Electroluminescence in organic crystals. J Chem Phys 38:2042–2043

    Google Scholar 

  72. Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913–915

    Google Scholar 

  73. Baldo MA, O'Brien DF, You Y et al (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154

    Google Scholar 

  74. Baldo MA, Thompson ME, Forrest SR (2000) High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature 403:750–753

    Google Scholar 

  75. Deaton JC, Switalski SC, Kondakov DY et al (2010) E-type delayed fluorescence of a phosphine-supported Cu2(μ-NAr2)2 diamond core: harvesting singlet and triplet excitons in OLEDs. J Am Chem Soc 132:9499–9508

    Google Scholar 

  76. Uoyama H, Goushi K, Shizu K et al (2012) Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492:234–238

    Google Scholar 

  77. Dias FB, Bourdakos KN, Jankus V et al (2013) Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters. Adv Mater 25:3707–3714

    Google Scholar 

  78. Flamigni L, Barbieri A, Sabatini C et al (2007) Photochemistry and photophysics of coordination compounds: iridium. Top Curr Chem 281:143–203

    Google Scholar 

  79. You Y, Park SY (2009) Phosphorescent iridium(III) complexes: toward high phosphorescence quantum efficiency through ligand control. Dalton Trans 8:1267–1282

    Google Scholar 

  80. Lowry MS, Bernhard S (2006) Synthetically tailored excited states: phosphorescent, cyclometalated iridium(III) complexes and their applications. Chem Eur J 12:7970–7977

    Google Scholar 

  81. Ulbricht C, Beyer B, Friebe C et al (2009) Recent developments in the application of phosphorescent iridium(III) complex systems. Adv Mater 21:4418–4441

    Google Scholar 

  82. Baranoff E, Yum JH, Graetzel M et al (2009) Cyclometallated iridium complexes for conversion of light into electricity and electricity into light. J Organomet Chem 694:2661–2670

    Google Scholar 

  83. Lo KK, Choi AW, Law WH (2012) Applications of luminescent inorganic and organometallic transition metal complexes as biomolecular and cellular probes. Dalton Trans 41:6021–6047

    Google Scholar 

  84. Sajoto T, Djurovich PI, Tamayo AB et al (2009) Temperature dependence of blue phosphorescent cyclometalated Ir(III) complexes. J Am Chem Soc 131:9813–9822

    Google Scholar 

  85. Li J, Djurovich PI, Alleyne BD et al (2005) Synthetic control of excited-state properties in cyclometalated Ir(III) complexes using ancillary ligands. Inorg Chem 44:1713–1727

    Google Scholar 

  86. Costa RD, Ortì E, Bolink HJ et al (2012) Luminescent ionic transition-metal complexes for light-emitting electrochemical cells. Angew Chem Int Ed 51:8178–8211

    Google Scholar 

  87. Brooks J, Babayan Y, Lamanski S et al (2002) Synthesis and characterization of phosphorescent cyclometalated platinum complexes. Inorg Chem 41:3055–3066

    Google Scholar 

  88. Cocchi M, Kalinowski J, Virgili D et al (2007) Single-dopant organic white electrophosphorescent diodes with very high efficiency and its reduced current density roll-off. Appl Phys Lett 90:163508

    Google Scholar 

  89. Burrows PE, Sapochak LS, McCarty DM et al (1994) Metal ion dependent luminescence effects in metal tris‐quinolate organic heterojunction light emitting devices. Appl Phys Lett 64:2718–2720

    Google Scholar 

  90. Katkova MA, Ilichev VA, Konev AN et al (2008) Electroluminescent characteristics of scandium and yttrium 8-quinolinolates. J Appl Phys 104:053706

    Google Scholar 

  91. Katkova MA, Kurskii YA, Fukin GK et al (2005) Efficient synthetic route to anhydrous mononuclear tris(8-quinolinolato)lanthanoid complexes for organic light-emitting devices. Inorg Chim Acta 358:3625–3632

    Google Scholar 

  92. Chen BJ, Sun XW (2005) The role of MgF2 buffer layer in tris-(8-hydroxyquinoline)aluminium-based organic light-emitting devices with Mg:Ag cathode. Semicond Sci Technol 20:801–804

    Google Scholar 

  93. Shestakov AF, Katkova MA, Emel’yanova NS et al (2010) Experimental and theoretical study of the effect of the substituent nature on the luminescent properties of scandium complexes with substituted 8-hydroxyquinolines. High Energy Chem 44:503–510

    Google Scholar 

  94. Katkova MA, Balashova TV, Lichev VA et al (2010) Synthesis, structures, and electroluminescent properties of scandium N, O-chelated complexes toward near-white organic light-emitting diodes. Inorg Chem 49:5094–5100

    Google Scholar 

  95. Burin ME, Ilichev VA, Pushkarev AP et al (2012) Synthesis and luminescence properties of lithium, zinc and scandium 1-(2-pyridyl)naphtholates. Org Electron 13:3203–3210

    Google Scholar 

  96. Ma YG, Chan WH, Zhou XM et al (1999) Light-emitting diode device from a luminescent organocopper(I) compound. New J Chem 23:263–265

    Google Scholar 

  97. Min J, Zhang Q, Sun W et al (2011) Neutral copper(I) phosphorescent complexes from their ionic counterparts with 2-(2’-quinolyl)benzimidazole and phosphine mixed ligand. Dalton Trans 40:686–693

    Google Scholar 

  98. Babashkina MG, Safin DA, Klein A et al (2010) Synthesis, characterisation and luminescent properties of mixed-ligand copper(I) complexes incorporating N-thiophosphorylated thioureas and phosphane ligands. Eur J Inorg Chem 2010:4018–4026

    Google Scholar 

  99. Zhang Q, Zhou Q, Cheng Y et al (2004) Highly efficient green phosphorescent organic light-emitting diodes based on CuI complexes. Adv Mater 16:432–436

    Google Scholar 

  100. Zhang Q, Zhou Q, Cheng Y et al (2006) Highly efficient electroluminescence from green-light-emitting electrochemical cells based on CuI complexes. Adv Funct Mater 16:1203–1208

    Google Scholar 

  101. Armaroli N, Accorsi G, Holler M et al (2006) Highly luminescent CuI complexes for light-emitting electrochemical cells. Adv Mater 18:1313–1316

    Google Scholar 

  102. Che G, Su Z, Li W et al (2006) Highly efficient and color-tuning electrophosphorescent devices based on CuI complex. Appl Phys Lett 89:103511

    Google Scholar 

  103. Su Z, Li W, Che G et al (2007) Enhanced electrophosphorescence of copper complex based devices by codoping an iridium complex. Appl Phys Lett 90:143505

    Google Scholar 

  104. Su Z, Li W, Chu B et al (2008) Efficient white organic light-emitting diodes based on iridium complex sensitized copper complex. J Phys D Appl Phys 41:085103

    Google Scholar 

  105. Moudam O, Kaeser A, Delavaux-Nicot B et al (2007) Electrophosphorescent homo- and heteroleptic copper(I) complexes prepared from various bis-phosphine ligands. Chem Commun 29:3077–3079

    Google Scholar 

  106. Jia WL, McCormick T, Tao Y et al (2005) New phosphorescent polynuclear Cu(I) compounds based on linear and star-shaped 2-(2′-pyridyl)benzimidazolyl derivatives: syntheses, structures, luminescence, and electroluminescence. Inorg Chem 44:5706–5712

    Google Scholar 

  107. Zhang Q, Ding J, Cheng Y et al (2007) Novel heteroleptic CuI complexes with tunable emission color for efficient phosphorescent light-emitting diodes. Adv Funct Mater 17:2983–2990

    Google Scholar 

  108. Si Z, Li J, Li B et al (2009) High light electroluminescence of novel Cu(I) complexes. J Lumin 129:181–186

    Google Scholar 

  109. Zhang L, Li B, Su Z (2009) Realization of high-energy emission from [Cu(N − N)(P − P)]+ complexes for organic light-emitting diode applications. J Phys Chem C 113:13968–13973

    Google Scholar 

  110. Sun W, Zhang Q, Qin L et al (2010) Phosphorescent cuprous complexes with N, O ligands – synthesis, photoluminescence, and electroluminescence. Eur J Inorg Chem 2010:4009–4017

    Google Scholar 

  111. Costa RD, Tordera D, Ortí E et al (2011) Copper(I) complexes for sustainable light-emitting electrochemical cells. J Mater Chem 21:16108–16118

    Google Scholar 

  112. Wada A, Zhang Q, Yasuda T et al (2012) Efficient luminescence from a copper(I) complex doped in organic light-emitting diodes by suppressing C–H vibrational quenching. Chem Commun 48:5340–5342

    Google Scholar 

  113. Igawa S, Hashimoto M, Kawata I et al (2013) Highly efficient green organic light-emitting diodes containing luminescent tetrahedral copper(I) complexes. J Mater Chem C 1:542–551

    Google Scholar 

  114. Parmeggiani F, Sacchetti A (2012) Preparation and luminescence thermochromism of tetranuclear copper(I)–pyridine–iodide clusters. J Chem Educ 89:946–949

    Google Scholar 

  115. Liu Z, Qayyum MF, Wu C et al (2011) A codeposition route to CuI−pyridine coordination complexes for organic light-emitting diodes. J Am Chem Soc 133:3700–3703

    Google Scholar 

  116. Volz D, Zink DM, Bocksrocker T et al (2013) Molecular construction kit for tuning solubility, stability and luminescence properties: heteroleptic MePyrPHOS-copper iodide-complexes and their application in organic light-emitting diodes. Chem Mater 25:3414–3426

    Google Scholar 

  117. Hashimoto M, Igawa S, Yashima M et al (2011) Highly efficient green organic light-emitting diodes containing luminescent three-coordinate copper(I) complexes. J Am Chem Soc 133:10348–10351

    Google Scholar 

  118. Yan F, Li WL, Chu B et al (2007) Sensitized electrophosphorescence of infrared emission diode based on copper phthalocyanine by an ytterbium complex. Appl Phys Lett 91:203512

    Google Scholar 

  119. Yan F, Li W, Chu B et al (2009) Sensitized infrared electrophosphorescence based on divalent copper complex by an iridium(III) complex. Org Electron 10:1408–1411

    Google Scholar 

  120. Yuan GZ, Huo YP, Nie XL et al (2012) Structure and photophysical properties of a dimeric Zn(II) complex based on 8-hydroxyquinoline group containing 2,6-dichlorobenzene unit. Tetrahedron 68:8018–8023

    Google Scholar 

  121. Czugler M, Neumann R, Weber E (2001) X-ray crystal structures and data bank analysis of Zn(II) and Cd(II) complexes of 2- and 7-nonyl substituted 8-hydroxyquinoline and 8-hydroxyquinaldine extractive agents. Inorg Chim Acta 313:100–108

    Google Scholar 

  122. Xu HB, Wen HM, Chen ZH et al (2010) Square structures and photophysical properties of Zn2Ln2 complexes (Ln = Nd, Eu, Sm, Er, Yb). Dalton Trans 39:1948–1953

    Google Scholar 

  123. Huo YP, Zhu SZ, Hu S (2010) Synthesis and luminescent properties of Zn complex based on 8-hydroxyquinoline group containing 3,5-bis(trifluoromethyl) benzene unit with unique crystal structure. Tetrahedron 66:8635–8640

    Google Scholar 

  124. Palenik GJ (1964) The structure of coordination compounds. III. A refinement of the structure of zinc 8-hydroxyquinolinate dehydrate. Acta Crystallogr 17:696–700

    Google Scholar 

  125. Najafi E, Amini MM, Ng SW (2011) 8-Hydroxy-2-methylquinolinium dichlorido(2-methylquinolin-8-olato-2N,O) zincate acetonitrile disolvate. Acta Crystallogr E67:m1280

    Google Scholar 

  126. Hamada Y, Sano T, Fujita M et al (1993) Organic electroluminescent devices with 8-hydroxyquinoline derivative-metal complexes as an emitter. Jpn J Appl Phys 32:L514–L515

    Google Scholar 

  127. Hamada Y, Sano T, Fujita M et al (1993) Blue electroluminescence in thin films of azomethin-zinc complexes. Jpn J Appl Phys 32:L511–L513

    Google Scholar 

  128. Hamada Y, Sano T, Fujii H et al (1996) White-light-emitting material for organic electroluminescent devices. Jpn J Appl Phys 35:L1339–L1341

    Google Scholar 

  129. Bolink HJ, De Angelis F, Baranoff E et al (2009) White-light phosphorescence emission from a single molecule: application to OLED. Chem Commun 31:4672–4674

    Google Scholar 

  130. Yu G, Yin S, Liu Y et al (2003) Structures, electronic states, and electroluminescent properties of a zinc(II) 2-(2-hydroxyphenyl)benzothiazolate complex. J Am Chem Soc 125:14816–14824

    Google Scholar 

  131. Xu X, Liao Y, Yu G et al (2007) Charge carrier transporting, photoluminescent, and electroluminescent properties of Zinc(II)-2-(2-hydroxyphenyl)benzothiazolate complex. Chem Mater 19:1740–1748

    Google Scholar 

  132. Kim DE, Kim WS, Kim BS et al (2008) Improvement of color purity in white OLED based on Zn(HPB)2 as blue emitting layer. Thin Solid Films 516:3637–3640

    Google Scholar 

  133. Son HJ, Han WS, Chun JY et al (2008) Generation of blue light-emitting zinc complexes by band-gap control of the oxazolylphenolate ligand system: syntheses, characterizations, and organic light emitting device applications of 4-coordinated Bis(2-oxazolylphenolate) Zinc(II) complexes. Inorg Chem 47:5666–5676

    Google Scholar 

  134. Wang P, Hong Z, Xie Z et al (2003) A bis-salicylaldiminato Schiff base and its zinc complex as new highly fluorescent red dopants for high performance organic electroluminescence devices. Chem Commun 14:1664–1665

    Google Scholar 

  135. Wang R, Deng L, Fu M et al (2012) Novel ZnII complexes of 2-(2-hydroxyphenyl)benzothiazoles ligands: electroluminescence and application as host materials for phosphorescent organic light-emitting diodes. J Mater Chem 22:23454–23460

    Google Scholar 

  136. Aleksanyan DV, Kozlov VA, Petrov BI et al (2013) Lithium, zinc and scandium complexes of phosphorylated salicylaldimines: synthesis, structure, thermochemical and photophysical properties, and application in OLEDs. RSC Adv 3:24484–24491

    Google Scholar 

  137. Xie J, Qiao J, Wang L et al (2005) An azomethin-zinc complex for organic electroluminescence: Crystal structure, thermal stability and optoelectronic properties. Inorg Chim Acta 358:4451–4458

    Google Scholar 

  138. Yu T, Su W, Li W et al (2006) Synthesis, crystal structure and electroluminescent properties of a Schiff base zinc complex. Inorg Chim Acta 359:2246–2251

    Google Scholar 

  139. Zeng HP, Wang GR, Zeng GC et al (2009) The synthesis, characterization and electroluminescent properties of zinc(II) complexes for single-layer organic light-emitting diodes. Dyes Pigments 83:155–161

    Google Scholar 

  140. Bagatin IA, Legnani C, Cremona M (2009) Investigation on Al(III) and Zn(II) complexes containing a calix[4]arene bearing two 8-oxyquinoline pendant arms used as emitting materials for OLEDs. Mater Sci Eng C 29:267–270

    Google Scholar 

  141. Lepnev L, Vaschenko A, Vitukhnovsky A et al (2009) OLEDs based on some mixed-ligand terbium carboxylates and zinc complexes with tetradentate Schiff bases: mechanisms of electroluminescence degradation. Synth Met 159:625–631

    Google Scholar 

Download references

Acknowledgements

The financial support from the European Union (HetIridium, CIG322280) is greatly appreciated. I am very grateful to Dr John Fossey for the discussion and time for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Baranoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baranoff, E. (2015). First-Row Transition Metal Complexes for the Conversion of Light into Electricity and Electricity into Light. In: Wong, WY. (eds) Organometallics and Related Molecules for Energy Conversion. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46054-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46054-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46053-5

  • Online ISBN: 978-3-662-46054-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics