Skip to main content

Photochemical Solar Energy Conversion and Storage Using Cyclometalated Iridium Complexes

  • Chapter
  • 1390 Accesses

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

The appealing photophysical properties of cyclometalated iridium complexes, such as their intense and highly efficient luminescence and long-lived excited states, render them highly desirable for the conversion and storage of solar energy. In this chapter, we describe general considerations in terms of pursuing these applications and track the successful use of cyclometalated iridium complexes as photosensitizers in dye-sensitized solar cells (DSSCs) and light-driven hydrogen production, which have gained a large amount of attention in recent years. Particular emphasis is placed on the systematic elucidation of the correlation between the complex architectures, the corresponding photophysical behavior, and the aforementioned potential promising applications of cyclometalated iridium complexes, which are expected to contribute possible design implications to the development of superior light-harvesting components for efficiently driving photosynthesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103:15729–15735

    Article  Google Scholar 

  2. Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed 46:52–66

    Article  Google Scholar 

  3. Walter MG, Warren EL, McKone JR et al (2010) Solar water splitting cells. Chem Rev 110:6446–6473

    Article  Google Scholar 

  4. Crabtree GW, Dresselhaus MS, Buchanan MV (2004) The hydrogen economy. Phys Today 57:39–44

    Article  Google Scholar 

  5. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  6. Lehn JM, Sauvage JP (1977) Chemical storage of light energy: catalytic generation of hydrogen by visible light or sunlight irradiation of neutral aqueous solutions. Nouv J Chim 1:449–451

    Google Scholar 

  7. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  8. McConnell I, Li G, Brudvig GW (2010) Energy conversion in natural and artificial photosynthesis. Chem Biol 17:434–447

    Article  Google Scholar 

  9. Frischmann PD, Mahata K, Würthner F (2013) Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies. Chem Soc Rev 42:1847–1870

    Article  Google Scholar 

  10. Sutin N, Creutz C (1980) Light induced electron transfer reactions of metal complexes. Pure Appl Chem 52:2717–2738

    Article  Google Scholar 

  11. Prier CK, Rankic DA, MacMillan DWC (2013) Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev 113:5322–5363

    Article  Google Scholar 

  12. Tucker JW, Stephenson CRJ (2012) Shining light on photoredox catalysis: theory and synthetic applications. J Org Chem 77:1617–1622

    Article  Google Scholar 

  13. Krassen H, Ott S, Heberle J (2011) ‘In vitro’ hydrogen production – using energy from the sun. Phys Chem Chem Phys 13:47–57

    Article  Google Scholar 

  14. Hirata N, Lagref JJ, Palomares EJ et al (2004) Supramolecular control of charge-transfer dynamics on dye-sensitized nanocrystalline TiO2 films. Chem Eur J 10:595–602

    Article  Google Scholar 

  15. Medlycott EA, Hanan GS (2005) Designing tridentate ligands for ruthenium(II) complexes with prolonged room temperature luminescence lifetimes. Chem Soc Rev 34:133–142

    Article  Google Scholar 

  16. Lowry MS, Bernhard S (2006) Synthetically tailored excited states: phosphorescent, cyclometalated iridium(III) complexes and their applications. Chem Eur J 12:7970–7977

    Article  Google Scholar 

  17. Ladouceur S, Zysman-Colman E (2013) A comprehensive survey of cationic iridium(III) complexes bearing nontraditional ligand chelation motifs. Eur J Inorg Chem 17:2985–3007

    Article  Google Scholar 

  18. Flamigni L, Barbieri A, Sabatini C, Ventura B, Barigelletti F (2007) Photochemistry and photophysics of coordination compounds: iridium. Top Curr Chem 281:143–203

    Article  Google Scholar 

  19. Chi Y, Chou PT (2010) Transition-metal phosphors with cyclometalating ligands: fundamentals and applications. Chem Soc Rev 39:638–655

    Article  Google Scholar 

  20. Holder E, Langeveld BMW, Schubert US (2005) New trends in the use of transition metal–ligand complexes for applications in electroluminescent devices. Adv Mater 17:1109–1121

    Article  Google Scholar 

  21. Dixon IM, Collin JP, Sauvage JP, Flamigni L, Encinas S, Barigelletti F (2000) A family of luminescent coordination compounds: iridium(III) polyimine complexes. Chem Soc Rev 29:385–391

    Article  Google Scholar 

  22. Lamansky S, Djurovich PI, Murphy D et al (2001) Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes. J Am Chem Soc 123:4304–4312

    Article  Google Scholar 

  23. Happ B, Winter A, Hager MD, Schubert US (2012) Photogenerated avenues in macromolecules containing Re(I), Ru(II), Os(II), and Ir(III) metal complexes of pyridine-based ligands. Chem Soc Rev 41:2222–2255

    Article  Google Scholar 

  24. Balzani V, Juris A, Venturi M (1996) Luminescent and redox-active polynuclear transition metal complexes. Chem Rev 96:759–833

    Article  Google Scholar 

  25. You Y, Park SY (2009) Phosphorescent iridium(III) complexes: toward high phosphorescence quantum efficiency through ligand control. Dalton Trans 8:1267–1282

    Article  Google Scholar 

  26. You Y, Nam W (2012) Photofunctional triplet excited states of cyclometalated Ir(III) complexes: beyond electroluminescence. Chem Soc Rev 41:7061–7084

    Article  Google Scholar 

  27. Hay PJ (2002) Theoretical studies of the ground and excited electronic states in cyclometalated phenylpyridine Ir(III) complexes using density functional theory. J Phys Chem A 106:1634–1641

    Article  Google Scholar 

  28. Slinker JD, Gorodetsky AA, Lowry MS et al (2004) Efficient yellow electroluminescence from a single layer of a cyclometalated iridium complex. J Am Chem Soc 126:2763–2767

    Article  Google Scholar 

  29. Tamayo AB, Garon S, Sajoto T et al (2005) Cationic bis-cyclometalated iridium(III) diimine complexes and their use in efficient blue, green, and red electroluminescent devices. Inorg Chem 44:8723–8732

    Article  Google Scholar 

  30. Lowry MS, Hudson WR, Pascal RA et al (2004) Accelerated luminophore discovery through combinatorial synthesis. J Am Chem Soc 126:14129–14135

    Article  Google Scholar 

  31. Nazeeruddin MK, Angelis FD, Fantacci S et al (2005) Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J Am Chem Soc 127:16835–16847

    Article  Google Scholar 

  32. Young KJ, Martini LA, Milot RL et al (2012) Light-driven water oxidation for solar fuels. Coord Chem Rev 256:2503–2520

    Article  Google Scholar 

  33. Bessho T, Yoneda E, Yum JH et al (2009) New paradigm in molecular engineering of sensitizers for solar cell applications. J Am Chem Soc 131:5930–5934

    Article  Google Scholar 

  34. Mayo EI, Kilså K, Tirrell T et al (2006) Cyclometalated iridium(III)-sensitized titanium dioxide solar cells. Photochem Photobiol Sci 5:871–873

    Article  Google Scholar 

  35. Geary EAM, Yellowlees LJ, Jack LA et al (2005) Synthesis, structure and properties of [Pt(II)(diimine)(dithiolate)] dyes with 3,3′, 4,4′ and 5,5′–disubstituted bipyridyl: applications in dye-sensitized solar cells. Inorg Chem 44:242–250

    Article  Google Scholar 

  36. Baranoff E, Yum JH, Graetzel M et al (2009) Cyclometallated iridium complexes for conversion of light into electricity and electricity into light. J Organomet Chem 694:2661–2670

    Article  Google Scholar 

  37. Baranoff E, Yum JH, Jung II et al (2010) Cyclometallated iridium complexes as sensitizers for dye-sensitized solar cells. Chem Asian J 5:496–499

    Article  Google Scholar 

  38. Ning Z, Zhang Q, Wu W et al (2009) Novel iridium complex with carboxyl pyridyl ligand for dye-sensitized solar cells: high fluorescence intensity, high electron injection efficiency? J Organomet Chem 694:2705–2711

    Article  Google Scholar 

  39. Shinpuku Y, Inui F, Nakai M et al (2011) Synthesis and characterization of novel cyclometalated iridium(III) complexes for nanocrystalline TiO2-based dye-sensitized solar cells. J Photochem Photobiol A Chem 222:203–209

    Article  Google Scholar 

  40. Dragonetti C, Valore A, Colombo A et al (2012) Simple novel cyclometallated iridium complexes for potential application in dye-sensitized solar cells. Inorg Chim Acta 388:163–167

    Article  Google Scholar 

  41. Wang D, Wu Y, Dong H et al (2013) Iridium (III) complexes with 5,5-dimethyl-3-(pyridin-2-yl)cyclohex-2-enone ligands as sensitizer for dye-sensitized solar cells. Org Electron 14:3297–3305

    Article  Google Scholar 

  42. Yuan YJ, Zhang JY, Yu ZT et al (2012) Impact of ligand modification on hydrogen photogeneration and light-harvesting applications using cyclometalated iridium complexes. Inorg Chem 51:4123–4133

    Article  Google Scholar 

  43. Yang CM, Wu CH, Liao HH et al (2007) Enhanced photovoltaic response of organic solar cell by singlet-to-triplet exciton conversion. Appl Phys Lett 90:133509–133509-3

    Article  Google Scholar 

  44. Lee W, Kwon TH, Kwon J, Kim J, Lee C, Hong JI (2011) Effect of main ligands on organic photovoltaic performance of Ir(III) complexes. New J Chem 35:2557–2563

    Article  Google Scholar 

  45. Kirch M, Lehn LM, Sauvage LP (1979) Hydrogen generation by visible light irradiation of aqueous solutions of metal complexes. An approach to the photochemical conversion and storage of solar energy. Helv Chim Acta 62:1345–1384

    Article  Google Scholar 

  46. Slama-Schwok A, Avnir D, Ottolengbi M (1989) Photoinduced charge separation across the solid-liquid interface of porous sol-gel glasses: catalyzed hydrogen generation from water. J Phys Chem 93:7544–7547

    Article  Google Scholar 

  47. Tinker LL, McDaniel ND, Bernhard S (2009) Progress towards solar-powered homogeneous water photolysis. J Mater Chem 19:3328–3337

    Article  Google Scholar 

  48. Goldsmith JI, Hudson WR, Lowry MS, Anderson TH, Bernhard S (2005) Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production. J Am Chem Soc 127:7502–7510

    Article  Google Scholar 

  49. Tinker LL, McDaniel ND, Curtin PN, Smith CK, Ireland MJ, Bernhard S (2007) Visible light induced catalytic water reduction without an electron relay. Chem Eur J 13:8726–8732

    Article  Google Scholar 

  50. Yuan YJ, Yu ZT, Chen XY, Zhang JY, Zou ZG (2011) Visible-light-driven H2 generation from water and CO2 conversion by using a zwitterionic cyclometalated iridium(III) complex. Chem Eur J 17:12891–12895

    Article  Google Scholar 

  51. Gärtner F, Sundararaju B, Surkus AE et al (2009) Light-driven hydrogen generation: efficient iron-based water reduction catalysts. Angew Chem Int Ed 48:9962–9965

    Article  Google Scholar 

  52. Hollmann D, Gärtner F, Ludwig R et al (2011) Insights into the mechanism of photocatalytic water reduction by DFT-supported in situ EPR/Raman spectroscopy. Angew Chem Int Ed 50:10246–10250

    Article  Google Scholar 

  53. Zhang P, Wang M, Na Y, Li X, Jiang Y, Sun L (2010) Homogeneous photocatalytic production of hydrogen from water by a bioinspired [Fe2S2] catalyst with high turnover numbers. Dalton Trans 39:1204–1206

    Article  Google Scholar 

  54. Mori K, Kubota Y, Yamashita H (2013) Iridium and rhodium complexes within a macroreticular acidic resin: a heterogeneous photocatalyst for visible-light driven H2 production without an electron mediator. Chem Asian J 8:3207–3213

    Article  Google Scholar 

  55. Lowry MS, Goldsmith JI, Slinker JD et al (2005) Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem Mater 17:5712–5719

    Article  Google Scholar 

  56. Cline ED, Adamson SE, Bernhard S (2008) Homogeneous catalytic system for photoinduced hydrogen production utilizing iridium and rhodium complexes. Inorg Chem 47:10378–10388

    Article  Google Scholar 

  57. Hansen S, Pohl MM, Klahn M, Spannenberg A, Beweries T (2013) Investigation and enhancement of the stability and performance of water reduction systems based on cyclometalated iridium(III) complexes. ChemSusChem 6:92–101

    Article  Google Scholar 

  58. Kagalwala HN, Gottlieb E, Li G, Li T, Jin R, Bernhard S (2013) Photocatalytic hydrogen generation system using a nickel-thiolate hexameric cluster. Inorg Chem 52:9094–9101

    Article  Google Scholar 

  59. Curtin PN, Tinker LL, Burgess CM, Cline ED, Bernhard S (2009) Structure-activity correlations among iridium(III) photosensitizers in a robust water-reducing system. Inorg Chem 48:10498–10506

    Google Scholar 

  60. Whang DR, Sakai K, Park SY (2013) Highly efficient photocatalytic water reduction with robust iridium(III) photosensitizers containing arylsilyl substituents. Angew Chem Int Ed 52:11612–11615

    Article  Google Scholar 

  61. Brooks AC, Basore K, Bernhard S (2013) Photon-driven reduction of Zn2+ to Zn metal. Inorg Chem 52:5794–5800

    Article  Google Scholar 

  62. Gärtner F, Boddien A, Barsch E et al (2011) Photocatalytic hydrogen generation from water with iron carbonyl phosphine complexes: improved water reduction catalysts and mechanistic insights. Chem Eur J 17:6425–6436

    Article  Google Scholar 

  63. Zhang P, Jacques PA, Chavarot-Kerlidou M et al (2012) Phosphine coordination to a cobalt diimine–dioxime catalyst increases stability during light-driven H2 production. Inorg Chem 51:2115–2120

    Article  Google Scholar 

  64. Gärtner F, Cozzula D, Losse S et al (2011) Synthesis, characterisation and application of iridium(III) photosensitisers for catalytic water reduction. Chem Eur J 17:6998–7006

    Article  Google Scholar 

  65. Gärtner F, Denurra S, Losse S et al (2012) Synthesis and characterization of new iridium photosensitizers for catalytic hydrogen generation from water. Chem Eur J 18:3220–3225

    Article  Google Scholar 

  66. Tinker LL, Bernhard S (2009) Photon-driven catalytic proton reduction with a robust homoleptic iridium(III) 6-phenyl-2,2′-bipyridine complex ([Ir(C^N^N)2]+). Inorg Chem 48:10507–10511

    Article  Google Scholar 

  67. Metz S, Bernhard S (2010) Robust photocatalytic water reduction with cyclometalated Ir(III) 4-vinyl-2,2′-bipyridine complexes. Chem Commun 46:7551–7553

    Article  Google Scholar 

  68. DiSalle B, Bernhard S (2011) Orchestrated photocatalytic water reduction using surface-adsorbing iridium photosensitizers. J Am Chem Soc 133:11819–11821

    Article  Google Scholar 

  69. Yuan YJ, Yu ZT, Liu XJ, Cai JG, Guan ZJ, Zou ZG (2014) Hydrogen photogeneration promoted by efficient electron transfer from iridium sensitizers to colloidal MoS2 catalysts. Sci Rep 4:4045–4045-9

    Google Scholar 

  70. Bokarev SI, Hollmann D, Pazidis A et al (2014) Spin density distribution after electron transfer from triethylamine to an [Ir(ppy)2(bpy)]+ photosensitizer during photocatalytic water reduction. Phys Chem Chem Phys 16:4789–4796

    Article  Google Scholar 

  71. Han Z, McNamara WR, Eum MS, Holland PL, Eisenberg R (2012) A nickel thiolate catalyst for the long-lived photocatalytic production of hydrogen in a noble-metal-free system. Angew Chem Int Ed 51:1667–1670

    Article  Google Scholar 

  72. Yu ZT, Yuan YJ, Cai JG, Zou ZG (2013) Charge-neutral, amidinate-containing iridium complexes capable of efficient photocatalytic water reduction. Chem Eur J 19:1303–1310

    Article  Google Scholar 

  73. Yuan YJ, Yu ZT, Gao HL, Zou ZG, Zheng C, Huang W (2013) Tricyclometalated iridium complexes as highly stable photosensitizers for light-induced hydrogen evolution. Chem Eur J 19:6340–6349

    Article  Google Scholar 

  74. Tamayo AB, Alleyne BD, Djurovich PI et al (2003) Synthesis and characterization of facial and meridional tris-cyclometalated iridium(III) complexes. J Am Chem Soc 125:7377–7387

    Article  Google Scholar 

  75. Yuan YJ, Yu ZT, Cai JG, Zheng C, Huang W, Zou ZG (2013) Highly efficient water reduction systems associated with homoleptic cyclometalated iridium complexes of various 2-phenylpyridines. ChemSusChem 6:1357–1365

    Article  Google Scholar 

  76. Tschierlei S, Presselt M, Kuhnt C et al (2009) Photophysics of an intramolecular hydrogen-evolving Ru–Pd photocatalyst. Chem Eur J 15:7678–7688

    Article  Google Scholar 

  77. Andreiadis ES, Chavarot-Kerlidou M, Fontecave M, Artero V (2011) Artificial photosynthesis: from molecular catalysts for light-driven water splitting to photoelectrochemical cells. Photochem Photobiol 87:946–964

    Article  Google Scholar 

  78. Fihri A, Artero V, Pereira A, Fontecave M (2008) Efficient H2-producing photocatalytic systems based on cyclometalated iridium- and tricarbonylrhenium-diimine photosensitizers and cobaloxime catalysts. Dalton Trans 41:5567–5569

    Google Scholar 

  79. Jasimuddin S, Yamada T, Fukuju K, Otsuki J, Sakai K (2010) Photocatalytic hydrogen production from water in self-assembled supramolecular iridium–cobalt systems. Chem Commun 46:8466–8468

    Article  Google Scholar 

  80. Soman S, Bindra GS, Paul A et al (2012) Wavelength dependent photocatalytic H2 generation using iridium–Pt/Pd complexes. Dalton Trans 41:12678–12680

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Tao Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, ZT. (2015). Photochemical Solar Energy Conversion and Storage Using Cyclometalated Iridium Complexes. In: Wong, WY. (eds) Organometallics and Related Molecules for Energy Conversion. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46054-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46054-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46053-5

  • Online ISBN: 978-3-662-46054-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics