Skip to main content

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

In this chapter, the role of organometallic compounds for hydrogen storage applications is highlighted. In this context, the focus is on transition metal complex-catalysed dehydrogenations of amine-borane adducts as a special class of so-called chemical hydrides as well as dehydrogenation reactions of formic acid and alcohols, which are also discussed as possible fuel alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bockris JOM (1972) A hydrogen economy. Science 176:1323

    Article  Google Scholar 

  2. Riis T, Hagen EF, Vie PJS, Ulleberg O (2006) Hydrogen production and storage. R&D priorities and gaps. Available via https://www.iea.org/publications/freepublications. Accessed 12 Nov 2013

  3. One widely discussed concept in this context is power-to-gas, see: Gahleitner G (2013) Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications. Int J Hydrog Energy 38:20392061

    Google Scholar 

  4. Collins DJ, Zhou H-C (2007) Hydrogen storage in metal–organic frameworks. J Mater Chem 17:3154–3160

    Article  Google Scholar 

  5. Hügle T, Hartl M, Lentz D (2011) The route to a feasible hydrogen-storage material: MOFs versus ammonia borane. Chem Eur J 17:10184–10207

    Article  Google Scholar 

  6. Note that only selected examples will be presented in this contributions as the main focus of this chapter will be on fundamental concepts of hydrogen storage using organometallic compounds

    Google Scholar 

  7. Sobota M, Nikiforidis I, Amende M, Zanón BS, Staudt T, Höfert O, Lykhach Y, Papp C, Hieringer W, Laurin M, Assenbaum D, Wasserscheid P, Steinrück H-P, Görling A, Libuda J (2011) Dehydrogenation of dodecahydro-N-ethylcarbazole on Pd/Al2O3 model catalysts. Chem Eur J 17:11542–11552

    Article  Google Scholar 

  8. Eblagon KM, Rentsch D, Friedrichs O, Remhof A, Zuettel A, Ramirez-Cuesta AJ, Tsang SC (2010) Hydrogenation of 9-ethylcarbazole as a prototype of a liquid hydrogen carrier. Int J Hydrog Energy 35:11609–11621

    Article  Google Scholar 

  9. Welch GC, San Juan RR, Masuda JD, Stephan DW (2006) Reversible, metal-free hydrogen activation. Science 314:1124–1126

    Article  Google Scholar 

  10. Zhu Z, Wang X, Peng Y, Lei H, Fettinger JC, Rivard E, Power PP (2009) Addition of hydrogen or ammonia to a low-valent group 13 metal species at 25 °C and 1 atmosphere. Angew Chem Int Ed 48:2031–2034

    Article  Google Scholar 

  11. Peng Y, Guo J-D, Ellis BD, Zhu Z, Fettinger J, Nagase S, Power PP (2009) Reaction of hydrogen or ammonia with unsaturated germanium or tin molecules under ambient conditions: oxidative addition versus arene elimination. J Am Chem Soc 131:16272–16282

    Article  Google Scholar 

  12. Power PP (2010) Main-group elements as transition metals. Nature 463:171–177

    Article  Google Scholar 

  13. Hamilton CW, Baker RT, Staubitz A, Manners I (2009) B-N compounds for chemical hydrogen storage. Chem Soc Rev 38:279–293

    Article  Google Scholar 

  14. Yan J-M, Zhang X-B, Han S, Shioyama H, Xu Q (2008) Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Angew Chem Int Ed 47:2287–2289

    Article  Google Scholar 

  15. Metin Ö, Mazumder V, Özkar S, Sun S (2010) Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane. J Am Chem Soc 132:1468–1469

    Article  Google Scholar 

  16. Yan J-M, Zhang X-B, Akita T, Haruta M, Xu Q (2010) One-step seeding growth of magnetically recyclable Au@Co core–shell nanoparticles: highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane. J Am Chem Soc 132:5326–5327

    Article  Google Scholar 

  17. Ciganda R, Garralda MA, Ibarlucea L, Pinilla E, Rosario Torres M (2010) A hydridoirida-β-diketone as an efficient and robust homogeneous catalyst for the hydrolysis of ammonia–borane or amine–borane adducts in air to produce hydrogen. Dalton Trans 39:7226–7229

    Article  Google Scholar 

  18. Graham TW, Tsang C-W, Chen X, Guo R, Jia W, Lu S-M, Sui-Seng C, Ewart CB, Lough A, Amoroso D, Abdur-Rashid K (2010) Catalytic solvolysis of ammonia borane. Angew Chem Int Ed 49:8708–8711

    Article  Google Scholar 

  19. Boulho C, Djukic J-P (2010) The dehydrogenation of ammonia–borane catalysed by dicarbonylruthenacyclic(II) complexes. Dalton Trans 39:8893–8905

    Article  Google Scholar 

  20. Staubitz A, Robertson APM, Sloan ME, Manners I (2010) Amine- and phosphine-borane adducts: new interest in old molecules. Chem Rev 110:4023–4078

    Article  Google Scholar 

  21. Staubitz A, Robertson APM, Manners I (2010) Ammonia-borane and related compounds as dihydrogen sources. Chem Rev 110:4079–4124

    Article  Google Scholar 

  22. Keaton RJ, Blacquiere JM, Baker RT (2007) Base metal catalyzed dehydrogenation of ammonia-borane for chemical hydrogen storage. J Am Chem Soc 129:1844–1845

    Article  Google Scholar 

  23. Yang X, Hall MB (2008) The catalytic dehydrogenation of ammonia-borane involving an unexpected hydrogen transfer to ligated carbene and subsequent carbon-hydrogen activation. J Am Chem Soc 130:1798–1799

    Article  Google Scholar 

  24. Baker RT, Gordon JC, Hamilton CW, Henson NJ, Lin P-H, Maguire S, Murugesu M, Scott BL, Smythe NC (2012) Iron complex-catalyzed ammonia–borane dehydrogenation. A potential route toward B–N-containing polymer motifs using earth-abundant metal catalysts. J Am Chem Soc 134:5598–5609

    Article  Google Scholar 

  25. Vance JR, Robertson APM, Lee K, Manners I (2011) Photoactivated, iron-catalyzed dehydrocoupling of amine–borane adducts: formation of boron–nitrogen oligomers and polymers. Chem Eur J 17:4099–4103

    Article  Google Scholar 

  26. Conley BL, Williams TJ (2010) Dehydrogenation of ammonia-borane by Shvo’s catalyst. Chem Commun 46:4815–4817

    Article  Google Scholar 

  27. Conley BL, Guess D, Williams TJ (2011) A robust, air-stable, reusable ruthenium catalyst for dehydrogenation of ammonia borane. J Am Chem Soc 133:14212–14215

    Article  Google Scholar 

  28. Käß M, Friedrich A, Drees M, Schneider S (2009) Ruthenium complexes with cooperative PNP ligands: bifunctional catalysts for the dehydrogenation of ammonia-borane. Angew Chem Int Ed 48:905–907

    Article  Google Scholar 

  29. Noyori R, Ohkuma T (2001) Asymmetric catalysis by architectural and functional molecular engineering: practical chemo- and stereoselective hydrogenation of ketones. Angew Chem Int Ed 40:40–73

    Article  Google Scholar 

  30. Denney MC, Pons V, Hebden TJ, Heinekey MD, Goldberg KI (2006) Efficient catalysis of ammonia borane dehydrogenation. J Am Chem Soc 128:12048–12049

    Article  Google Scholar 

  31. Jaska CA, Temple K, Lough AJ, Manners I (2003) Transition metal-catalyzed formation of boron-nitrogen bonds: catalytic dehydrocoupling of amine-borane adducts to form aminoboranes and borazines. J Am Chem Soc 125:9424–9434

    Article  Google Scholar 

  32. Hügle T, Kühnel MF, Lentz D (2009) Hydrazine borane: a promising hydrogen storage material. J Am Chem Soc 131:7444–7446

    Article  Google Scholar 

  33. Hannauer J, Akdim O, Demirci UB, Geantet C, Herrmann J-M, Miele P, Xu Q (2011) High-extent dehydrogenation of hydrazine borane N2H4BH3 by hydrolysis of BH3 and decomposition of N2H4. Energy Environ Sci 4:3355–3358

    Article  Google Scholar 

  34. Thomas J, Klahn M, Spannenberg A, Beweries T (2013) Group 4 metallocene catalysed full dehydrogenation of hydrazine borane. Dalton Trans 42:14668–14672

    Article  Google Scholar 

  35. Pun D, Lobkovsky E, Chirik PJ (2007) Amineborane dehydrogenation promoted by isolable zirconium sandwich, titanium sandwich and N2 complexes. Chem Commun 42:3297–3299

    Article  Google Scholar 

  36. Beweries T, Hansen S, Kessler M, Klahn M, Rosenthal U (2011) Catalytic dehydrogenation of dimethylamine borane by group 4 metallocene alkyne complexes and homoleptic amido compounds. Dalton Trans 40:7689–7692

    Article  Google Scholar 

  37. Beweries T, Thomas J, Klahn M, Schulz A, Heller D, Rosenthal U (2011) Catalytic and kinetic studies of the dehydrogenation of dimethylamine borane with an iPr substituted titanocene catalyst. ChemCatChem 3:1865–1868

    Article  Google Scholar 

  38. Sloan ME, Staubitz A, Clark TJ, Russell CA, Lloyd-Jones GC, Manners I (2010) Homogeneous catalytic dehydrocoupling/dehydrogenation of amine-borane adducts by early transition metal, group 4 metallocene complexes. J Am Chem Soc 132:3831–3841

    Article  Google Scholar 

  39. Helten H, Dutta B, Vance JR, Sloan ME, Haddow MF, Sproules S, Collison D, Whitell GR, Lloyd-Jones GC, Manners I (2012) Paramagnetic titanium(III) and zirconium(III) metallocene complexes as precatalysts for the dehydrocoupling/dehydrogenation of amine-boranes. Angew Chem Int Ed 125:455–458

    Article  Google Scholar 

  40. Chapman AM, Haddow MF, Wass DF (2011) Frustrated Lewis pairs beyond the main group: cationic zirconocene-phosphinoaryloxide complexes and their application in catalytic dehydrogenation of amine boranes. J Am Chem Soc 133:8826–8829

    Article  Google Scholar 

  41. Vogt M, De Bruin B, Berke H, Trincado M, Grützmacher H (2011) Amino olefin nickel(I) and nickel(0) complexes as dehydrogenation catalysts for amine boranes. Chem Sci 2:723–727

    Article  Google Scholar 

  42. Sewell LJ, Huertos MA, Dickinson ME, Weller AS (2013) Dehydrocoupling of dimethylamine borane catalyzed by Rh(PCy3)2H2Cl. Inorg Chem 52:4509–4516

    Article  Google Scholar 

  43. Perutz RN, Sabo-Etienne S (2007) The σ-CAM mechanism: σ complexes as the basis of σ-bond metathesis at late-transition-metal centers. Angew Chem Int Ed 46:2578–2592

    Article  Google Scholar 

  44. Stevens CJ, Dallanegra R, Chaplin AB, Weller AS, Macgregor SA, Ward B, McKay D, Alcaraz G, Sabo-Etienne S (2011) [Ir(PCy3)2(H)2(H2B = NMe2)]+ as a latent source of aminoborane: probing the role of metal in the dehydrocoupling of H3B · NMe2H and retrodimerisation of [H2BNMe2]2. Chem Eur J 17:3011–3020

    Article  Google Scholar 

  45. Tang CY, Phillips N, Bates JI, Thompson AL, Gutmann MJ, Aldridge S (2012) Dimethylamine borane dehydrogenation chemistry: syntheses, X-ray and neutron diffraction studies of 18-electron aminoborane and 14-electron aminoboryl complexes. Chem Commun 48:8096–8098

    Article  Google Scholar 

  46. Liptrot DJ, Hill MS, Mahon MF, MacDougall DJ (2011) Group 2 promoted hydrogen release from NMe2H · BH3: intermediates and catalysis. Chem Eur J 16:8508–8515

    Article  Google Scholar 

  47. Cowley HJ, Holt MS, Melen RL, Rawson JM, Wright DS (2011) Catalytic dehydrocoupling of Me2NHBH3 with Al(NMe2)3. Chem Commun 47:2682–2684

    Article  Google Scholar 

  48. Hanssmann MM, Melen RL, Wright DS (2011) Group 13 BN dehydrocoupling reagents, similar to transition metal catalysts but with unique reactivity. Chem Sci 2:1554–1559

    Article  Google Scholar 

  49. Erickson KA, Wright DS, Waterman R (2013) Dehydrocoupling of amine boranes via tin(IV) and tin(II) catalysts. J Organomet Chem 751:541–545

    Article  Google Scholar 

  50. Reller C, Mertens FORL (2012) A self-contained regeneration scheme for spent ammonia borane based on the catalytic hydrodechlorination of BCl3. Angew Chem Int Ed 51:11731–11735

    Article  Google Scholar 

  51. Sutton AD, Burrell AK, Dixon DA, Garner EB III, Gordon JC, Nakagawa T, Ott KC, Robinson JP, Vasiliu M (2011) Regeneration of ammonia borane spent fuel by direct reaction with hydrazine and liquid ammonia. Science 331:1426–1429

    Article  Google Scholar 

  52. Davis BL, Dixon DA, Garner EB, Gordon JC, Matus MH, Scott B, Stephens FH (2009) Efficient regeneration of partially spent ammonia borane fuel. Angew Chem Int Ed 48:6812–6816

    Article  Google Scholar 

  53. Coffey RS (1967) The decomposition of formic acid catalysed by soluble metal complexes. Chem Commun 923924

    Google Scholar 

  54. Gao Y, Kuncheria JK, Jenkins HA, Puddephatt RJ, Yap GPA (2000) The interconversion of formic acid and hydrogen/carbon dioxide using a binuclear ruthenium complex catalyst. J Chem Soc Dalton Trans 32123217

    Google Scholar 

  55. Morris DJ, Clarkson GJ, Wills M (2000) Insights into hydrogen generation from formic acid using ruthenium complexes. Organometallics 28:4133–4140

    Article  Google Scholar 

  56. Loges B, Boddien A, Junge H, Beller M (2008) Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells. Angew Chem Int Ed 47:3962–3965

    Article  Google Scholar 

  57. Boddien A, Loges B, Junge H, Beller M (2008) Hydrogen generation at ambient conditions: application in fuel cells. ChemSusChem 1:751–758

    Article  Google Scholar 

  58. Loges B, Boddien A, Hunge H, Noyes JR, Baumann W, Beller M (2009) Chem Commun 45:4185-4187

    Google Scholar 

  59. Fellay C, Dyson PJ, Laurenczy G (2008) A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst. Angew Chem Int Ed 47:3966–3968

    Article  Google Scholar 

  60. Fellay C, Yan N, Dyson PJ, Laurenczy G (2009) Selective formic acid decomposition for high-pressure hydrogen generation: a mechanistic study. Chem Eur J 15:3752–3760

    Article  Google Scholar 

  61. Hull JF, Himeda Y, Wang W-H, Hashiguchi B, Periana R, Szalda DJ, Muckerman JT, Fujita E (2012) Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nat Chem 4:383–388

    Article  Google Scholar 

  62. Boddien A, Gärtner F, Jackstell R, Junge H, Spannenberg A, Baumann W, Ludwig R, Beller M (2010) Ortho-metalation of iron(0) tribenzylphosphine complexes: homogeneous catalysts for the generation of hydrogen from formic acid. Angew Chem Int Ed 49:8993–8996

    Article  Google Scholar 

  63. Boddien A, Loges B, Gärtner F, Torborg C, Fumino K, Junge H, Ludwig R, Beller M (2010) Iron-catalyzed hydrogen production from formic acid. J Am Chem Soc 132:8924–8934

    Article  Google Scholar 

  64. Boddien A, Mellmann D, Gärtner F, Jackstell R, Junge H, Dyson PJ, Laurenczy G, Ludwig R, Beller M (2012) Efficient dehydrogenation of formic acid using an iron catalyst. Science 333:1733–1736

    Article  Google Scholar 

  65. Oldenhof S, de Bruin B, Lutz M, Siegler MA, Patureau FW, van der Vlugt JI, Reek J (2013) Base-free production of H2 by dehydrogenation of formic acid using an iridium–bisMETAMORPhos complex. Chem Eur J 19:11507–11511

    Article  Google Scholar 

  66. Himeda Y (2009) Highly efficient hydrogen evolution by decomposition of formic acid using an iridium catalyst with 4,4′-dihydroxy-2,2′-bipyridine. Green Chem 11:2018–2022

    Article  Google Scholar 

  67. Leitner W (1995) Carbon dioxide as a raw material: the synthesis of formic acid and its derivatives from CO2. Angew Chem Int Ed Engl 34:2207–2221

    Article  Google Scholar 

  68. Jessop PG, Ikariya T, Noyori R (1996) Homogeneous hydrogenation of carbon dioxide. Chem Rev 95:259–272

    Article  Google Scholar 

  69. Wang W, Wang S, Ma S, Gong J (2012) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727

    Article  Google Scholar 

  70. Tanaka R, Yamashita M, Nozaki K (2009) Catalytic hydrogenation of carbon dioxide using Ir(III)-pincer complexes. J Am Chem Soc 131:14168–14169

    Article  Google Scholar 

  71. Federsel C, Boddien A, Jackstell R, Jennerjahn R, Dyson PJ, Scopelliti R, Laurenczy G, Beller M (2010) A well-defined iron catalyst for the reduction of bicarbonates and carbon dioxide to formates, alkyl formates, and formamides. Angew Chem Int Ed 49:9777–9780

    Article  Google Scholar 

  72. Federsel C, Ziebart C, Jackstell R, Baumann W, Beller M (2012) Catalytic hydrogenation of carbon dioxide and bicarbonates with a well-defined cobalt dihydrogen complex. Chem Eur J 18:72–75

    Article  Google Scholar 

  73. Fujita E, Muckerman JT, Himeda Y (2013) Interconversion of CO2 and formic acid by bio-inspired Ir complexes with pendent bases. Biochim Biophys Acta 1827:1031–1038

    Article  Google Scholar 

  74. Boddien A, Federsel C, Gärtner F, Sponholz P, Mellmann D, Jackstell R, Junge H, Beller M (2011) CO2-“neutral” hydrogen storage based on bicarbonates and formats. Angew Chem Int Ed 50:6411–6414

    Article  Google Scholar 

  75. Himeda Y, Miyazawa S, Hirose T (2011) Interconversion between formic acid and H2/CO2 using rhodium and ruthenium catalysts for CO2 fixation and H2 storage. ChemSusChem 4:487–493

    Article  Google Scholar 

  76. Tanaka R, Yamashita M, Chung LW, Morokuma K, Nozaki K (2011) Mechanistic studies on the reversible hydrogenation of carbon dioxide catalyzed by an Ir-PNP complex. Organometallics 30:6742–6750

    Article  Google Scholar 

  77. Papp G, Csorba J, Laurenczy G, Joo F (2011) A charge/discharge device for chemical hydrogen storage and generation. Angew Chem Int Ed 50:10433–10435

    Article  Google Scholar 

  78. Johnson TC, Morris DJ, Wills M (2010) Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem Soc Rev 39:81–88

    Article  Google Scholar 

  79. Dobson A, Robinson SD (1977) Complexes of the platinum metals. 7. Homogeneous ruthenium and osmium catalysts for the dehydrogenation of primary and secondary alcohols. Inorg Chem 16:137–142

    Article  Google Scholar 

  80. Ligthart GBWL, Meijer RH, Donners MPJ, Meuldijk J, Vekemans JAJM, Hulshof LA (2003) Highly sustainable catalytic dehydrogenation of alcohols with evolution of hydrogen gas. Tetrahedron Lett 44:1507–1509

    Article  Google Scholar 

  81. van Buijtenen J, Meuldijk J, Vekemans JAJM, Hulshof LA, Kooijman H, Spek AL (2006) Dinuclear ruthenium complexes bearing dicarboxylate and phosphine ligands. Acceptorless catalytic dehydrogenation of 1-phenylethanol. Organometallics 25:873–881

    Article  Google Scholar 

  82. Morton D, Cole-Hamilton DJ (1987) Rapid thermal hydrogen production from alcohols catalysed by [Rh(2,2′-bipyridyl)2]CI. J Chem Soc Chem Commun 248249

    Google Scholar 

  83. Morton D, Cole-Hamilton DJ (1988) Molecular hydrogen complexes in catalysis: highly efficient hydrogen production from alcoholic substrates catalysed by ruthenium complexes. J Chem Soc Chem Commun 11541156

    Google Scholar 

  84. Junge H, Beller M (2005) Ruthenium-catalyzed generation of hydrogen from iso-propanol. Tetrahedron Lett 46:1031–1034

    Article  Google Scholar 

  85. Junge H, Loges B, Beller M (2007) Novel improved ruthenium catalysts for the generation of hydrogen from alcohols. Chem Commun 42:522–524

    Article  Google Scholar 

  86. Zhang J, Leitus G, Ben-David Y, Milstein D (2005) Facile conversion of alcohols into esters and dihydrogen catalyzed by new ruthenium complexes. J Am Chem Soc 127:10840–10841

    Article  Google Scholar 

  87. Gunanathan C, Ben-David Y, Milstein D (2007) Direct synthesis of amides from alcohols and amines with liberation of H2. Science 317:790–792

    Article  Google Scholar 

  88. Nielsen M, Kammer A, Cozzula D, Junge H, Gladiali S, Beller M (2011) Efficient hydrogen production from alcohols under mild reaction conditions. Angew Chem Int Ed 50:9593–9597

    Article  Google Scholar 

  89. Nielsen M, Junge H, Kammer A, Beller M (2012) Towards a green process for bulk-scale synthesis of ethyl acetate: efficient acceptorless dehydrogenation of ethanol. Angew Chem Int Ed 51:5711–5713

    Article  Google Scholar 

  90. Olah GA, Goeppert A, Surya Prakash GK (2009) Beyond oil and gas: the methanol economy, second updated and enlarged edition. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  91. Nielsen M, Alberico E, Baumann W, Drexler H-J, Junge H, Gladiali S, Beller M (2013) Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature 495:85–90

    Article  Google Scholar 

  92. Alberico E, Sponholz P, Cordes C, Nielsen M, Drexler H-J, Baumann W, Junge H, Beller M (2013) Selective hydrogen production from methanol with a defined iron pincer catalyst under mild conditions. Angew Chem Int Ed 52:14162–14166

    Article  Google Scholar 

  93. Rodriguez-Lugo RE, Trincado M, Vogt M, Tewes F, Santiso-Quinones G, Grützmacher H (2013) A homogeneous transition metal complex for clean hydrogen production from methanol–water mixtures. Nat Chem 5:342–347

    Article  Google Scholar 

  94. Monney A, Barsch E, Sponholz P, Junge H, Ludwig R, Beller M (2013) Base-free hydrogen generation from methanol using a bi-catalytic system. Chem Commun 50:707–709

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Beweries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beweries, T. (2015). Organometallics for Hydrogen Storage Applications. In: Wong, WY. (eds) Organometallics and Related Molecules for Energy Conversion. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46054-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46054-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46053-5

  • Online ISBN: 978-3-662-46054-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics