Skip to main content

Metal-Organic Frameworks as Platforms for Hydrogen Generation from Chemical Hydrides

  • Chapter
Organometallics and Related Molecules for Energy Conversion

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 1538 Accesses

Abstract

Metal-organic frameworks (MOFs), a new class of emerging materials with porosity, crystalline, high interior surface area, controllable structures, high thermal stability, and high yield with low cost, are showing the potential applications for hydrogen storage/release. With respect to physical hydrogen storage (compression, liquefaction, and physisorption), the chemical hydrogen storage is free from extreme processing conditions and safety risk. In this chapter, we select recent and significant advances in the development of MOFs as platforms for hydrogen generation from chemical hydrides and highlight special emphasis on enhanced kinetics and thermodynamics for (1) hydrogen generation from chemical hydrides confined in MOFs, (2) MOF-supported metal nanoparticle-catalyzed hydrogen generation from chemical hydrides, and (3) hydrogen generation from chemical hydrides catalyzed by catalysts formed using MOFs as precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiang HL, Xu Q (2011) Porous metal-organic frameworks as platforms for functional applications. Chem Commun 47:3351–3370

    Google Scholar 

  2. Suh MP, Park HJ, Prasad TK et al (2012) Hydrogen storage in metal-organic frame works. Chem Rev 112:782–835

    Google Scholar 

  3. Murray LJ, Dinca M, Long JR (2009) Hydrogen storage in metal-organic frameworks. Chem Soc Rev 38:1294–1314

    Google Scholar 

  4. Ward MD (2013) Molecular fuel tanks. Science 300:1104–1105

    Google Scholar 

  5. Lim W-X, Thornton AW, Hill AJ (2013) High performance hydrogen storage from Be-BTB metal-organic framework at room temperature. Langmuir 29:8524–8533

    Google Scholar 

  6. Duan X, Yu J, Cai J et al (2013) A microporous metal-organic framework of a rare sty topology for high CH4 storage at room temperature. Chem Commun 49:2043–2045

    Google Scholar 

  7. Nugent P, Belmabkhout Y, Burd SD et al (2013) Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495:80–84

    Google Scholar 

  8. Geier SJ, Mason JA, Bloch ED et al (2013) Selective adsorption of ethylene over ethane and propylene over propane in the metal-organic frameworks M2(dobdc) (M-Mg, Mn, Fe, Co, Ni, Zn). Chem Sci 4:2054–2061

    Google Scholar 

  9. Sumida K, Rogow D, Mason JA et al (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112:724–781

    Google Scholar 

  10. Herm ZR, Wiers BM, Mason JA et al (2013) Separation of hexane isomers in a metal-organic framework with triangular channels. Science 340:960–964

    Google Scholar 

  11. Bloch ED, Queen WL, Krishna R, Krishna R et al (2012) Hydrocarbon separations in a metal-organic framework with open iron (II) coordination sites. Science 335:1606–1610

    Google Scholar 

  12. Li J-R, Sculley J, Zhou H-C (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932

    Google Scholar 

  13. Yang Q, Liu D, Zhong C et al (2013) Development of computational methodologies for metal-organic frameworks and their application in gas separations. Chem Rev 113:8261–8323

    Google Scholar 

  14. Li SL, Xu Q (2013) Metal-organic frameworks as platforms for clean energy. Energy Environ Sci 6:1656–1683

    Google Scholar 

  15. Pardo E, Train C, Gontard G et al (2011) High proton conduction in a chiral ferromagnetic metal-organic quartz-like framework. J Am Chem Soc 133:15328–15331

    Google Scholar 

  16. Ikezoe Y, Washino G, Uemura T et al (2012) Autonomous motors of a metal-organic framework powered by reorganization of self-assembled peptides at interfaces. Nat Mater 11:1081–1085

    Google Scholar 

  17. Cai D, Guo H, Wen L et al (2013) Fabrication of hierarchical architectures of Tb-MOF by a “green coordination modulation method” for the sensing of heavy metal ions. Cryst Eng Commun 15:6702–6708

    Google Scholar 

  18. Wright PA (2010) Opening the door to peptide-based porous solids. Science 329:1025–1026

    Google Scholar 

  19. Britt D, Tranchemontagne D, Yaghi OM (2008) Metal-organic frameworks with high capacity and selectivity for harmful gases. PNAS 105(33):11623–11627

    Google Scholar 

  20. Zou X, Goupil J-M, Thomas S et al (2012) Detection of Harmful gases by copper-containing metal-organic framework films. J Phys Chem C 116:16593–16600

    Google Scholar 

  21. Khan NA, Hasan Z, Jhung SH (2013) Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J Hazard Mater 244–245:444–456

    Google Scholar 

  22. Peterson GW, Rossin JA, DeCoste JB et al (2013) Zirconium hydroxide-metal-organic framework composites for toxic chemical removal. Int Eng Chem Res 52:5462–5469

    Google Scholar 

  23. McKinlay AC, Eubank JF, Wuttke S et al (2013) Nitric oxide adsorption and delivery in flexible MIL-88(Fe) metal organic frameworks. Chem Mater 25:1592–1599

    Google Scholar 

  24. Dhakshinamoorthy A, Alvaro M, Garcia H (2012) Commercial metal-organic frameworks as heterogeneous catalysts. Chem Commun 48:11275–11288

    Google Scholar 

  25. Seo JS, Whang D, Lee H et al (2000) A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404:982–986

    Google Scholar 

  26. Yoon M, Srirambalaji R, Kim K et al (2012) Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem Rev 112:1196–1231

    Google Scholar 

  27. Cirma A, García H, LIabrés I, Xamena FX (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655

    Google Scholar 

  28. Cirujano FG, Leyva-Pérez A, Corna A et al (2013) MOFs as multifunctional catalysts: synthesis of secondary arylamines, quinolines, pyrroles, and arylpyrrolidines over bifunctional MIL-101. ChemCatChem 5:538–549

    Google Scholar 

  29. Dhakshinamoorthy A, Opanasenko M, Cejka J et al (2013) Metal organic frameworks as solid catalysts in condensation reactions of carbonyl groups. Adv Synth Catal 355:247–268

    Google Scholar 

  30. Lee JY, Farha OK, Roberts J et al (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38:1450–1459

    Google Scholar 

  31. Horcajada P, Gref R, Baati T et al (2012) Metal-organic frameworks in biomedicine. Chem Rev 112(2):1232–1268

    Google Scholar 

  32. Cui Y, Yue Y, Qian G et al (2012) Luminescent functional metal-organic frameworks. Chem Rev 112(2):1126–1162

    Google Scholar 

  33. Zhang W, Xiong R-G (2012) Ferroelectric metal-organic frameworks. Chem Rev 112:1163–1195

    Google Scholar 

  34. Kuppler RJ, Timmons DJ, Fang QR et al (2009) Potential applications of metal-organic frameworks. Coord Chem Rev 253:3042–3066

    Google Scholar 

  35. Furukawa H, Cordova KE, O’Keeffe M et al (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444

    Google Scholar 

  36. Liang Z, Du J, Sun L et al (2013) Design and synthesis of two porous metal-organic frameworks with nbo and agw topologies showing high CO2 adsorption capacity. Inorg Chem 52:10720–10722

    Google Scholar 

  37. Latroche M, Surblé S, Serre C et al (2006) Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. Angew Chem Int Ed 45:8227–8231

    Google Scholar 

  38. Li T, Kozlowski MT, Doud EA et al (2013) Stepwise ligand exchange for the preparation of a family of mesoporous MOFs. J Am Chem Soc 135:11688–11691

    Google Scholar 

  39. Bew SP, Burrows AD, Düren T et al (2012) Calix[4]areene-based metal-organic frameworks: towards hierarchically porous materials. Chem Commun 48:4824–4826

    Google Scholar 

  40. Kim TK, Lee KJ, Cheon JY et al (2013) Nanoporous metal oxides with tunable and nanocrystalline frameworks via conversion of metal-organic frameworks. J Am Chem Soc 135:8940–8946

    Google Scholar 

  41. Grobler I, Smith VJ, Bhatt PM et al (2013) Tunable anisotropic thermal expansion of a porous zinc (II) metal-organic framework. J Am Chem Soc 135:6411–6414

    Google Scholar 

  42. Wu H, Chua YS, Krungleviciute V et al (2013) Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. J Am Chem Soc 135:10525–10532

    Google Scholar 

  43. Cook T, Zheng YR, Stang PJ (2013) Metal-organic frameworks and self-Assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem Rev 113:734–777

    Google Scholar 

  44. Valtchev V, Tosheva L (2013) Porous nanosized particles: preparation, properties, and applications. Chem Rev 113:6734–6760

    Google Scholar 

  45. Jiang HL, Makal TA, Zhou HC (2013) Interpenetration control in metal-organic frameworks for functional applications. Coord Chem Rev 257:2232–2249

    Google Scholar 

  46. Wang C, Liu D, Lin W (2013) Metal-organic frameworks as a tunable platform for designing functional molecular materials. J Am Chem Soc 135:13222–13234

    Google Scholar 

  47. Eddaoudi M, Kim J, Rosi N et al (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469–472

    Google Scholar 

  48. Moon HR, Lim DW, Suh MP (2013) Fabrication of metal nanoparticles in metal-organic frameworks. Chem Soc Rev 42:1807–1824

    Google Scholar 

  49. Huang YL, Gong YN, Jiang L et al (2013) A unique magnesium-based 3D MOF with nanoscale cages and temperature dependent selective gas sorption properties. Chem Commun 49:1753–1755

    Google Scholar 

  50. Mitra A, Hubley CT, Panda DK et al (2013) Anion-directed assembly of a non-interpenetrated square-grid metal-organic framework with nanoscale porosity. Chem Commun 49:6629–6631

    Google Scholar 

  51. Saito M, Toyao T, Ueda K et al (2013) Effect of pore sizes on catalytic activities of arenetricarbonyl metal complexes constructed within Zr-based MOFs. Dalton Trans 42:9444–9447

    Google Scholar 

  52. Chae HK, Siberio-Perez DY, Kim J et al (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427:23–527

    Google Scholar 

  53. Li H, Eddaoudi M, O’Keeffe M et al (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279

    Google Scholar 

  54. Farha OK, Eryazici I, Jeong MC et al (2013) Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc 134:15016–15021

    Google Scholar 

  55. Rosi NL et al (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129

    Google Scholar 

  56. Dalebrook AF, Gan WJ, Grasemann M et al (2013) Hydrogen storage: beyond conventional methods. Chem Commun 49:8735–8751

    Google Scholar 

  57. Krishna R, Titus E, Salimian M et al (2012) Hydrogen storage for energy application. In: Liu J (ed) Hydrogen storage. InTech, pp 252–254

    Google Scholar 

  58. Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462

    Google Scholar 

  59. Combelles C, Yahia MB, Pedesseau L et al (2011) FeII/FeIII mixed-valence state induced by Li-insertion into the metal-organic-framework MIl-53(Fe): a DFT + U study. J Power Sources 196:3426–3432

    Google Scholar 

  60. de Combarieu G, Morcrette M, Millange F et al (2009) Influence of the Benzoquinone sorption on the structure and electrochemical performance of the MIL-53 (Fe) hybrid porous material in a lithium-ion battery. Chem Mater 21:1602–1611

    Google Scholar 

  61. Wiers BM, Foo M-L, Balsara NP et al (2011) A solid lithium electrolyte via addition of lithium isopropoxide to a metal-organic framework with open metal sites. J Am Chem Soc 133:14522–14525

    Google Scholar 

  62. Zhang L, Wu HB, Madhavi S, Hng HH et al (2012) Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J Am Chem Soc 134:17388–17391

    Google Scholar 

  63. Shimizu GKH, Taylor JM, Kim SR (2013) Proton conduction with metal-organic frameworks. Science 341:354–356

    Google Scholar 

  64. Yoon M, Suh H, Natarajan S et al (2013) Proton conduction in metal-organic frameworks and related modularly built porous solids. Angew Chem Int Ed 52:2688–2700

    Google Scholar 

  65. Sen S, Nair NN, Tamada T et al (2012) High proton conductivity by a metal-organic framework incorporating Zn8O clusters with aligned imidazolium groups decorating the channels. J Am Chem Soc 134:19432–19437

    Google Scholar 

  66. Kim SR, Dawson KW, Gelfand BS et al (2013) Enhancing proton conduction in a metal−organic framework by isomorphous ligand replacement. J Am Chem Soc 35:963–966

    Google Scholar 

  67. Taylor JM, Dawson KW, Shimizu GKH (2013) A water-stable metal-organic framework with highly acidic pores for proton-conducting applications. J Am Chem Soc 135:1193–1196

    Google Scholar 

  68. Morozan A, Jaouen F (2012) Metal organic frameworks for electrochemical applications. Energy Environ Sci 5:9269–9290

    Google Scholar 

  69. Díaz R, Orcajo MG, Botas J et al (2012) Co8-MOF-5 as electrode for supercapacitors. Mater Lett 68:126–128

    Google Scholar 

  70. Liu B, Shioyama H, Akita T et al (2008) Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc 130:5390–5391

    Google Scholar 

  71. Chaikittisilp W, Hu M, Wang H et al (2012) Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Commun 48:7259–7261

    Google Scholar 

  72. Zhang F, Hao L, Zhang L et al (2011) Solid-state thermolysis preparation of Co3O4 nano/micro superstructures from metal-organic framework for supercapacitors. Int J Electrochem Sci 6:2943–2954

    Google Scholar 

  73. Stephan D (2013) A step closer to a methanol economy. Nature 495:54–55

    Google Scholar 

  74. Kopetz H (2013) Build a biomass energy market. Nature 494:29–31

    Google Scholar 

  75. Assadourian E, Prugh T (2013) State of the world 2013: is sustainability still possible? In: Murphy TW Jr (ed) Beyond fossil fuels: assessing energy alternatives, 15th edn. Springer, Heidelberg, pp 172–183

    Google Scholar 

  76. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352. doi:10.1038/35104620

    Google Scholar 

  77. DOE targets for onboard hydrogen storage systems for light-duty vehicles. http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage_explanation.pdf. Accessed 16 Nov 2011

  78. Satyapal S, Read C, Ordaz G, Thomas G (2006) Annual DOE hydrogen program merit review: hydrogen storage, U.S. Department of Energy, Washington DC. Available at: http://www.hydrogen.energy.gov/pdfs/review06/2_storage_satyapal.pdf

  79. Grochala W, Edwards PP (2004) Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem Rev 104:1283–1316

    Google Scholar 

  80. Cundy CS, Cox PA (2003) The hydrothermal synthesis of Zeolites: history and development from the earliest days to the present times. Chem Rev 103:663–701

    Google Scholar 

  81. Zhou O, Shimoda H, Gao B et al (2002) Materials science of carbon nanotubes: fabrication, integration, and properties of macroscopic structures of carbon nanotubes. Acc Chem Res 35:1045–1053

    Google Scholar 

  82. Linares N, Serrano E, Rico M et al (2011) Incorporation of chemical functionalities in the framework of mesoporous silica. Chem Commun 47:9024–9035

    Google Scholar 

  83. Zhou C, Fang ZZ, Lu J et al (2013) Thermodynamic and kinetic destabilization of magnesium hydride using Mg–In solid solution alloy. J Am Chem Soc 135:10982–10985

    Google Scholar 

  84. Paskevicius M, Sheppard DA, Buckeley CE (2010) Thermodynamic changes in mechanochemically synthesized magnesium hydride nanoparticles. J Am Chem Soc 132:5077–5083

    Google Scholar 

  85. Lu J, Choi YJ, Fang ZZ et al (2010) Hydrogenation of nanocrystalline Mg at room temperature in the presence of TiH2. J Am Chem Soc 132:6616–6617

    Google Scholar 

  86. Zhou C, Fang ZZ, Ren C et al (2013) Effect of Ti intermetallic catalysts on hydrogen storage properties of magnesium hydride. J Phys Chem C 117:12973–12980

    Google Scholar 

  87. Chen P, Xiong Z, Luo J et al (2002) Interaction of hydrogen with metal nitrides and imides. Nature 420:302–304

    Google Scholar 

  88. Yadav M, Xu Q (2012) Liquid-phase chemical hydrogen storage materials. Energy Environ Sci 5:9698–9725

    Google Scholar 

  89. Umegaki T, Yan JM, Zhang XB et al (2009) Boran- and nitrogen-based chemical hydrogen storage materials. Int J Hydrog Energy 34:2303–2311

    Google Scholar 

  90. Li L, Xu CC, Chen CC et al (2013) Sodium alanate systems for efficient hydrogen storage. Int J Hydrog Energy 38:8798–8812

    Google Scholar 

  91. Tan T, Yu X (2013) Chemical regeneration of hydrogen storage materials. RSC Adv 3:23879–23894

    Google Scholar 

  92. Moussa G, Moury R, Demirci UB et al (2013) Boron-based hydrides for chemical hydrogen storage. Int J Energy Res 37:825–842

    Google Scholar 

  93. Ravnsbak D, Filinchuk Y, Cerenius Y et al (2009) A series of mixed-metal borohydrides. Angew Chem Int Ed 48:6659–6663

    Google Scholar 

  94. Orimo S, Nakamori Y, Eliseo JR et al (2007) Complex hydrides for hydrogen storage. Chem Rev 107:4111–4132

    Google Scholar 

  95. Nicola CD, Karabach YY, Kirillov AM et al (2007) Supramolecular assemblies of trinuclear triangular copper(II) secondary building units through hydrogen bonds. Generation of different metal-organic frameworks, valuable catalysts for peroxidative oxidative of alkanes. Inorg Chem 46(1):221–230

    Google Scholar 

  96. Kida M, Sakagami H, Takahashi N et al (2013) Chemical shift changes and line narrowing in 13C NMR spectra of hydrocarbon clathrate hydrates. J Phys Chem A 117:4108–4114

    Google Scholar 

  97. Struzhkin VV, Militzer B, Mao WL et al (2007) Hydrogen storage in molecular clathrates. Chem Rev 107:4133–4151

    Google Scholar 

  98. Koh DY, Juwoon HK, Shin W et al (2013) Atomic hydrogen production from semi-clathrate hydrates. J Am Chem Soc 134:5560–5562

    Google Scholar 

  99. Oldenhof S, de Bruin B, Lutz M et al (2013) Base-free production of H2 by dehydrogenation of formic acid using an iridium-bisMETAMORPhos complex. Chem Eur J 19:11507–11511

    Google Scholar 

  100. Boddien A, Mellmann D, Gärtner F et al (2011) Efficient of dehydrogenation of formic acid using an iron catalyst. Science 333(23):1733–1736

    Google Scholar 

  101. Bi QY, Du XL, Liu YM et al (2012) Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions. J Am Chem Soc 134:8926–8933

    Google Scholar 

  102. Grasemann M, Laurenczy G (2012) Formic acid as a hydrogen source – recent developments and future trends. Energy Environ Sci 5:8171–8181

    Google Scholar 

  103. Teichmann D, Arlt W, Wasserscheid P et al (2011) A future energy supply based on Liquid Organic Hydrogen Carriers (LOHC). Energy Environ Sci 4:2767–2773

    Google Scholar 

  104. Brückner N, Obesser K, Bösmann A et al (2013) Evaluation of industrially applied heat-transfer fluids as liquid organic hydrogen carrier systems. Chem Sus Chem 7(1):229–235. doi:10.1002/cssc.201300426

    Google Scholar 

  105. Teichmann D, Stark K, Müller K et al (2012) Energy storage in residential and commercial buildings via Liquid Organic Hydrogen Carriers (LOHC). Energy Environ Sci 5:9044–9054

    Google Scholar 

  106. Eblagon KM, Tam K, Tsang SCE (2012) Comparison of catalytic performance of supported ruthenium and rhodium for hydrogenation of 9-ethylcarbazole for hydrogen storage applications. Energy Environ Sci 5:8621–8630

    Google Scholar 

  107. Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358

    Google Scholar 

  108. Klebanoff LE, Keller JO (2013) 5 years of hydrogen storage research in the U. S. DOE metal hydride center of excellence (MHCoE). Int J Hydrog Energy 38(11):4533–4576

    Google Scholar 

  109. Sutton AD, Burrell AK, Dixon DA et al (2011) Regeneration of ammonia borane spent fuel by direct reaction with hydrazine and liquid ammonia. Science 331(6023):1426–1429

    Google Scholar 

  110. Lu ZH, Xu Q (2011) Recent progress in boron- and nitrogen-based chemical hydrogen storage. Funct Mater Lett 5(1):1230001-1–1230001-9

    MathSciNet  Google Scholar 

  111. Jiang HL, Xu Q (2011) Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catal Today 170:56–63

    Google Scholar 

  112. Lu Z-H, Jiang H-L, Yadav M et al (2012) Synergistic catalysis of Au-Co@SiO2 nanospheres in hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. J Mater Chem 22:5065–5071

    Google Scholar 

  113. Cohen SM (2012) Postsynthetic methods for the functionalization of metal-organic frameworks. Chem Rev 112(2):970–1000

    Google Scholar 

  114. Tanabe KK, Cohen SM (2011) Postsynthetic modification of metal-organic frameworks—a progress report. Chem Soc Rev 40:498–519

    Google Scholar 

  115. Wang Z, Cohen SM (2009) Postsynthetic modification of metal-organic frameworks. Chem Soc Rev 38:1315–1329

    Google Scholar 

  116. Kong GQ, Ou S, Zou C et al (2012) Assembly and post-modification of a metal-organic nanotube for highly efficient catalysis. J Am Chem Soc 134:19851–19857

    Google Scholar 

  117. Fei H, Cahill JF, Prather KA et al (2013) Tandem postsynthetic metal ion and ligand exchange in zeolitic imidazolate frameworks. Inorg Chem 52:4011–4016

    Google Scholar 

  118. Genna DT, Wong-Foy AG, Matzge AJ et al (2013) Heterogenization of homogeneous catalysts in metal-organic frameworks via cation exchange. J Am Chem Soc 135:10586–10589

    Google Scholar 

  119. Hoskins BF, Robson R (1990) Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4, 4′, 4″, 4′″-tetracyanotetraphenylmethane]BF4 · xC6H5NO2. J Am Chem Soc 112:1546–1554

    Google Scholar 

  120. Fujita M, Kwon YJ, Washizu S et al (1994) Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium (II) and 4,4′-bipyridine. J Am Chem Soc 116:1151–1152

    Google Scholar 

  121. Dhakshinamoorthy A, Opanasenko M, Cejka J et al (2013) Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Catal Sci Technol 3:2509–2540

    Google Scholar 

  122. Gutowska A, Li L, Shin Y et al (2005) Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew Chem Int Ed 44(23):3578–3582

    Google Scholar 

  123. Zhao J, Shi J, Zhang X et al (2010) A soft hydrogen storage material: poly(methylacrylate)-confined ammonia borane with controllable dehydrogenation. Adv Mater 22:394–397

    Google Scholar 

  124. Xia GL, Li L, Guo ZP et al (2013) Stabilization of NaZn(BH4)3 via nanoconfinement in SBA-15 towards enhanced hydrogen release. J Mater Chem A 1:250–257

    Google Scholar 

  125. Appelt C, Slootweg JC, Lammertsma K et al (2013) Reaction of a P/Al-based frustrated lewis pair with ammonia, borane, and amine–boranes: adduct formation and catalytic dehydrogenation. Angew Chem Int Ed 52:4256–4259

    Google Scholar 

  126. Tang Z, Chen H, Chen X et al (2012) Graphene oxide based recyclable dehydrogenation of ammonia borane within a hybrid nanostructure. J Am Chem Soc 134:5464–5467

    Google Scholar 

  127. Hu MG, Geanangel RA, Wendlandt WW (1978) The thermal decomposition of ammonia borane. Thermochim Acta 23:249–255

    Google Scholar 

  128. Guo XD, Zhu GS, Li ZY et al (2006) A lanthanide metal-organic framework with high thermal stability and available Lewis-acid metal sites. Chem Commun 30:3172–3174

    Google Scholar 

  129. Li Z, Zhu G, Lu G et al (2010) Ammonia borane confined by a metal-organic framework for chemical hydrogen storage: enhancing kinetics and eliminating ammonia. J Am Chem Soc 132:1490–1491

    Google Scholar 

  130. Wahab MA, Zhao H, Yao XD (2012) Nano-confined ammonia borane for chemical hydrogen storage. Front Chem Sci Eng 6:27–33

    Google Scholar 

  131. Cakey SR, Wong-Foy AG, Matzger AJ (2008) Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J Am Chem Soc 130:10870–10871

    Google Scholar 

  132. Remy T, Peter SA, Van der Perre S (2013) Selective dynamics CO2 separations on Mg-MOF-74 at low pressures: a detailed comparison with 13X. J Phys Chem C 117:9301–9310

    Google Scholar 

  133. Gadipelli S, Ford J, Zhou W et al (2011) Nanoconfinement and catalytic dehydrogenation of ammonia borane by magnesium-metal-organic-framework-74. Chem Eur J 17:6043–6047

    Google Scholar 

  134. Chui SSY, Lo SMF, Charmant JPH et al (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283:1148–1150

    Google Scholar 

  135. Yue Y, Qiao Z, Fulvio PF et al (2013) Template-free synthesis of hierarchical porous metal-organic frameworks. J Am Chem Soc 135:9572–9575

    Google Scholar 

  136. Wu H, Zhou W, Yildirim T (2009) High-capacity methane storage in metal-organic frameworks M2(dhtp): the important role of open metal sites. J Am Chem Soc 131:4995–5000

    Google Scholar 

  137. Rowsell JLC, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J Am Chem Soc 128:1304–1315

    Google Scholar 

  138. Srinivas G, Ford J, Zhou W, Yildirim T (2012) Zn-MOF assisted dehydrogenation of ammonia borane: enhanced kinetics and clean hydrogen generation. Int J Hydrog Energy 37:3633–3638

    Google Scholar 

  139. Millange F, Guillou N, Walton RI et al (2008) Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks. Chem Commun 39:4732–4734

    Google Scholar 

  140. Scherb C, Schöodel A, Bein T (2008) Directing the structure of metal-organic frameworks by oriented surface growth on an organic monolayer. Angew Chem 120:5861–5863

    Google Scholar 

  141. Srinivas G, Travis W, Ford J et al (2013) Nanoconfined ammonia borane in a flexible metal-organic framework Fe-MIL-53: clean hydrogen release with fast kinetics. J Mater Chem A 1:4167–4172

    Google Scholar 

  142. Staubitz A, Rbertson APM, Manners I (2010) Ammonia-Borane and related compounds as dihydrogen sources. Chem Rev 110:4079–4124

    Google Scholar 

  143. Peng Y, Ben T, Jia Y et al (2012) Dehydrogenation of ammonia borane confined by low density porous aromatic framework. J Phys Chem C 116:25694–25700

    Google Scholar 

  144. Férey G, Mellot-Draznieks C, Serre C et al (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 310:2040–2042

    Google Scholar 

  145. Si X-L, Sun L-X, Xu F, Jiao C-L, Li F, Liu S-S, Zhang J, Song L-F, Jiang C-H, Wang S, Liu Y-L, Sawada Y (2011) Improved hydrogen desorption properties of ammonia borane by Ni-modified metal-organic frameworks. Int J Hydrog Energy 36:6698–6704

    Google Scholar 

  146. Bernt S, Guillerm V, Serre C et al (2011) Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. Chem Commun 47:2838–2840

    Google Scholar 

  147. Gao L, Li CYV, Yung H, Chan K-Y (2013) A functionalized MIL-101(Cr) metal-organic framework for enhanced hydrogen release from ammonia borane at low temperature. Chem Commun 49:10629–10631

    Google Scholar 

  148. Aijaz A, Karkamkar A, Choi YJ et al (2012) Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach. J Am Chem Soc 134:13926–13929

    Google Scholar 

  149. Phan A, Doonan CJ, Uribe-Romo FJ et al (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43(1):58–67

    Google Scholar 

  150. Banerjee R, Furukawa H, Britt D et al (2009) Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131:3875–3877

    Google Scholar 

  151. Fairen-Jimenez D, Moggach SA, Wharmby MF et al (2011) Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J Am Chem Soc 133:8900–8902

    Google Scholar 

  152. Lu G, Hupp JF (2010) Metal-organic frameworks as sensors: a ZIF-8 based Fabry-Pérot devices as a selective sensor for chemical vapors and gases. J Am Chem Soc 132:7832–7833

    Google Scholar 

  153. Zhong RQ, Zou RQ, Nakagawa T et al (2012) Improved hydrogen release from ammonia-borane with ZIF-8. Inorg Chem 51:2728–2730

    Google Scholar 

  154. Kalidindi SB, Esken D, Fischer RA (2011) B–N chemistry@ZIF-8: dehydrocoupling of dimethylamine borane at room temperature by size-confinement effects. Chem Eur J 17:6594–6597

    Google Scholar 

  155. Schüth F, Bogdanović B, Felderhoff M (2004) Light metal hydrides and complex hydrides for hydrogen storage. Chem Commun 20:2249–2258

    Google Scholar 

  156. Gilliard RJ Jr, Abraham MY, Wang Y et al (2012) Carbene-stabilized beryllium borohydride. J Am Chem Soc 134:9953–9955

    Google Scholar 

  157. Sun T, Wang H, Zhang QA et al (2011) Synergetic effects of hydrogenated Mg3La and TiCl3 on the dehydrogenation of LiBH4. J Mater Chem 21:9179–9184

    Google Scholar 

  158. Wang FH, Liu YF, Gao MX et al (2009) Formation reactions and the thermodynamics and kinetics of dehydrogenation reaction of mixed alanate Na2LiAlH6. J Phys Chem C 113:7978–7984

    Google Scholar 

  159. Nakamori Y, Orimo S (2008) Borohydrides as hydrogen storage materials. In: Walker G (ed) Solid-state hydrogen storage. Woodhead Publishing, Cambridge, pp 420–449

    Google Scholar 

  160. Zhang Y, Ding H, Liu C et al (2013) Significant effects of graphite fragments on hydrogen storage performances of LiBH4: a first-principles approach. Int J Hydrog Energy 38:13717–13727

    Google Scholar 

  161. Rafieudedin QXH, Li P et al (2011) Hydrogen sorption improvement of LiAlH4 catalyzed by Nb2O5 and Cr2O3 nanoparticles. J Phys Chem C 115:13088–13099

    Google Scholar 

  162. Muir SS, Yao X (2011) Progress in sodium borohydride as a hydrogen storage material: development of hydrolysis catalysts and reaction system. Int J Hydrog Energy 36:5983–5997

    Google Scholar 

  163. Xiong R, Sang G, Yan X et al (2013) Separation and characterization of the active species in Ti-doped NaAlH4. Chem Commun 49:2046–2048

    Google Scholar 

  164. Michel KJ, Ozolin V (2011) Native defect concentrations in NaAlH4 and Na3AlH6. J Phys Chem C 115:21443–21453

    Google Scholar 

  165. Kurban Z, Lovell A, Bennington SM et al (2010) A solution selection model for coaxial electro spinning and its application to nanostructured hydrogen storage materials. J Phys Chem C 114:21201–21213

    Google Scholar 

  166. Nielsen TK, Besenbacherb F, Jensen TR (2011) Nanoconfined hydrides for energy storage. Nanoscale 3:2086–2098

    Google Scholar 

  167. Baldé CP, Hereijgers BPC, Bitter JH et al (2008) Sodium alanate nanoparticle-linking size to hydrogen storage properties. J Am Chem Soc 130:6761–6765

    Google Scholar 

  168. Kumar LH, Rao CV, Viswanathan B (2013) Catalytic effects of nitrogen-doped grapheme and carbon nanotube additives on hydrogen storage properties of sodium alanate. J Mater Chem A 1:3355–3361

    Google Scholar 

  169. Hsu C-P, Jiang D-H, Lee S-L et al (2013) Buckyball-, carbon nanotube-, graphite-, and graphene-enhanced dehydrogenation of lithium aluminum hydride. Chem Commun 49:8845–8847

    Google Scholar 

  170. Hazrati E, Brpcls G, Wijsde GA (2012) First-principles study of LiBH4 nanoclusters and their hydrogen storage properties. J Phys Chem C 116:18038–18047

    Google Scholar 

  171. Gao J, Ngene P, Lindemann I et al (2012) Enhanced reversibility of H2 sorption in nanoconfined complex metal hydrides by alkali metal addition. J Mater Chem 22:13209–13215

    Google Scholar 

  172. Xia G, Meng Q, Guo Z et al (2013) Nanoconfinement significantly improves the thermodynamics and kinetics of co-infiltrated 2LiBH4–LiAlH4 composites: stable reversibility of hydrogen absorption/resorption. Acta Mater 61:6882–6893

    Google Scholar 

  173. Nielsen TK, Javadian P, Polanski M et al (2014) Nanoconfined NaAlH4: prolific effects from increased surface area and pore volume. Nanoscale 6:599–607

    Google Scholar 

  174. Vajeeston P, Sartori S, Ravindran P et al (2012) MgH2 in carbon scaffolds: a combined experimental theoretical investigation. J Phys Chem C 116:21139–21147

    Google Scholar 

  175. Nielsen TK, Javadian P, Polanski M et al (2013) Nanoconfined NaAlH4: determination of distinct prolific effects from pore size, crystallite size, and surface interactions. J Phys Chem C 116:21046–21051

    Google Scholar 

  176. Wahab MA, Jia Y, Jia D et al (2013) Enhanced hydrogen desorption from Mg(BH4)2 by combing nanoconfinement and a Ni catalyst. J Mater Chem A 1:3471–3478

    Google Scholar 

  177. Ward PA, Teprovich JA Jr, Peters B et al (2013) Reversible hydrogen storage in a LiBH4-C60 nanocomposite. J Phys Chem C 117:22569–22575

    Google Scholar 

  178. Ngene P, Adelhelm P, Beale AM et al (2010) LiBH4/SBA-15 nanocomposites prepared by melt infiltration under hydrogen pressure: synthesis and hydrogen sorption properties. J Phys Chem C 114:6163–6168

    Google Scholar 

  179. Guo L, Jiao L, Li L et al (2013) Enhanced desorption properties of LiBH4 incorporated into mesoporous TiO2. Int J Hydrog Energy 38:162–168

    Google Scholar 

  180. Schlesinger HI, Brown HC, Finholt AE et al (1940) Metallo borohydrides. III. lithium borohydride. J Am Chem Soc 62:3429–3435

    Google Scholar 

  181. Züttel A, Wenger P, Rentsch S et al (2003) LiBH4 a new hydrogen storage material. J Power Sources 118:1–7

    Google Scholar 

  182. Mauron P, Buchter F, Friedrichs O et al (2008) Stability and reversibility of LiBH4. J Phys Chem B 112:906–910

    Google Scholar 

  183. Yan Y, Remhof A, Hwang SJ et al (2012) Pressure and temperature dependence of the decomposition pathway of LiBH4. Phys Chem Chem Phys 14:6514–6519

    Google Scholar 

  184. Vajo JJ, Olsen GL (2007) Tetrahydroborates as new hydrogen storage materials. Scr Mater 56:829–834

    Google Scholar 

  185. Züttel A, Rentsch S, Fischer P et al (2003) Hydrogen storage properties of LiBH4. J Alloys Compd 356–357:515–520

    Google Scholar 

  186. Zhang Y, Zhang WS, Wang AQ et al (2007) LiBH4 Nanoparticles supported by disordered mesoporous carbon: hydrogen storage performances and destabilization mechanisms. Int J Hydrog Energy 32:3976–3980

    Google Scholar 

  187. Yu XB, Wu Z, Chen QR, Huang TS et al (2007) Improved hydrogen storage properties of LiBH4 destabilized by carbon. Appl Phys Lett 90:034106

    Google Scholar 

  188. Fang ZZ, Kang XD, Wang P et al (2008) Improved reversible dehydrogenation of lithium borohydride by milling with as-prepared dingle-walled carbon nanotubes. J Phys Chem C 112:17023–17029

    Google Scholar 

  189. Wang PJ, Fang ZZ, Ma LP et al (2008) Effect of SWNTs on the reversible hydrogen storage properties of LiBH4 − MgH2 composite. Int J Hydrog Energy 33:5611–5616

    Google Scholar 

  190. Gross AF, Vajo JJ, Van Atta SL et al (2008) Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds. J Phys Chem C 112:5651–5657

    Google Scholar 

  191. Liu X, Peaslee D, Jost CZ et al (2010) Controlling the decomposition pathway of LiBH4 via confinement in highly ordered nanoporous carbon. J Phys Chem C 114:14036–14041

    Google Scholar 

  192. Wang PJ, Fang ZZ, Ma LP et al (2010) Effect of carbon addition on hydrogen storage behaviors of Li–Mg–B–H system. Int J Hydrog Energy 35:3072–3075

    Google Scholar 

  193. Zhao-Karger Z, Witter R, Bardají EG et al (2013) Altered reaction pathways of eutectic LiBH4–Mg(BH4)2 by nanoconfinement. J Mater Chem A 1:3379–3386

    Google Scholar 

  194. Liu X, Peaslee D, Jost CZ et al (2011) Systematic pore-size effects of nanoconfinement of LiBH4: elimination of diborane release and tunable behavior for hydrogen storage applications. Chem Mater 23:1331–1336

    Google Scholar 

  195. Sun T, Liu J, Jia Y et al (2012) Confined LiBH4: enabling fast hydrogen release at 100 °C. Int J Hydrog Energy 37:18920–18926

    Google Scholar 

  196. Fang ZZ, Wang P, Rufford TE et al (2008) Kinetic- and thermodynamic-based improvements of lithium borohydride incorporated into activated carbon. Acta Mater 56:6257–6263

    Google Scholar 

  197. Remhof A, Mauron P, Züttel A et al (2013) Hydrogen dynamics in nanoconfined lithiumborohydride. J Am Chem Soc 117:3789–3798

    Google Scholar 

  198. Nielsen TK, Bosenberg U, Dornheim M et al (2010) A reversible nanoconfined chemical reaction. ACS Nano 4:3903–3908

    Google Scholar 

  199. Li C, Peng P, Zhou D et al (2011) Research and progress in LiBH4 for hydrogen storage: a review. Int J Hydrog Energy 36:14512–14526

    Google Scholar 

  200. Sun W, Li S, Mao J et al (2011) Nanoconfinement of lithium borohydride in Cu-MOFs towards low temperature dehydrogenation. Dalton Trans 40:5673–5676

    Google Scholar 

  201. Gross KJ, Majzoub EH, Spangler SW (2003) The effects of titanium precursors on hydriding properties of alanates. J Alloys Compd 356–357:423–428

    Google Scholar 

  202. Claudia W, Pommerin A, Felderhoff M et al (2003) On the state of the titanium and zirconium in Ti- or Zr-doped NaAlH4 hydrogen storage material. Phys Chem Chem Phys 5:5149–5153

    Google Scholar 

  203. Bogdanović B, Schwickardi M (1997) Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J Alloys Compd 253:1–9

    Google Scholar 

  204. Bogdanović B, Brand RA, Marjanović A et al (2000) Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials. J Alloys Compd 302:36–58

    Google Scholar 

  205. Vegge T (2006) Equilibrium structure and Ti-catalyzed H2 desorption in NaAlH4 nanoparticles from density functional theory. Phys Chem Chem Phys 8:4853–4861

    Google Scholar 

  206. Zhao Y, Wang H, Guo J (2011) Energetics and structure of single Ti defects and their influence on the decomposition of NaAlH4. Phys Chem Chem Phys 13:552–562

    Google Scholar 

  207. Frankcombe TJ (2012) Proposed mechanisms for the catalytic activity of Ti in NaAlH4. Chem Rev 112:2164–2178

    Google Scholar 

  208. Wang P, Kang XD, Cheng HM (2005) Exploration of the nature of active Ti species in metallic Ti-doped NaAlH4. J Phys Chem B 109:20131–20136

    Google Scholar 

  209. Frankcombe TJ (2013) Catalyzed Rehydrogenation of NaAlH4: Ti and friends are active on NaH surfaces; Pt and friends are not. J Phys Chem C 117:8150–8155

    Google Scholar 

  210. Xiao X, Fan X, Yu K et al (2009) Catalytic mechanism of new TiC-doped sodium alanate for hydrogen storage. J Phys Chem C 113:20745–20751

    Google Scholar 

  211. Li L, Qiu F, Wang Y et al (2012) TiN catalyst for the reversible hydrogen storage performance of sodium alanate system. J Mater Chem 22:13782–13787

    Google Scholar 

  212. Suttisawat Y, Rangsunvigit P, Kitiyanan B et al (2007) Catalytic effect of Zr and Hf on hydrogen desorption/absorption of NaAlH4 and LiAlH4. Int J Hydrog Energy 32:1277–1285

    Google Scholar 

  213. Fan X, Xiao X, Chen L (2013) Significantly improved hydrogen storage properties of NaAlH4 catalyzed by Ce-based nanoparticles. J Mater Chem A 1:9752–9759

    Google Scholar 

  214. Anton DL (2003) Hydrogen desorption kinetics in transition metal modified NaAlH4. J Alloys Compd 356–357:400–404

    Google Scholar 

  215. Wang J, Ebner AD, Zidan R et al (2005) Synergistic effects of co-dopants on the dehydrogenation kinetics of sodium aluminum hydride. J Alloys Compd 391:245–255

    Google Scholar 

  216. Fan X, Xiao X, Chen L et al (2011) Enhanced hydriding–dehydriding performance of CeAl2-doped NaAlH4 and the evolvement of Ce-containing species in the cycling. J Phys Chem C 115:2537–2543

    Google Scholar 

  217. Fan X, Xiao X, Chen L et al (2011) Hydriding-dehydriding kinetics and the microstructure of La- and Sm-doped NaAlH4 prepared via direct synthesis method. Int J Hydrog Energy 36:10861–10869

    Google Scholar 

  218. Gao J, Adelhelm P, Verkuijlen MHW et al (2010) Confinement of NaAlH4 in nanoporous carbon: impact on H2 release, reversibility, and thermodynamics. J Phys Chem C 114:4675–4682

    Google Scholar 

  219. Lohstroh W, Roth A, Hahn H et al (2010) Thermodynamic effects in nanoscale NaAlH4. Chem Phys Chem 11:789–792

    Google Scholar 

  220. Stephens RD, Gross AF, Van Atta SL et al (2009) The kinetic enhancement of hydrogen cycling in NaAlH4 by melt infusion into nanoporous carbon aerogel. Nanotechnology 20:204018

    Google Scholar 

  221. Majzoub EH, Zhou F, Ozoliņš V (2011) First-principles calculated phase diagram for nanoclusters in the Na–Al–H system: a single-step decomposition pathway for NaAlH4. J Phys Chem C 115:2636–2643

    Google Scholar 

  222. Mueller T, Ceder G (2010) Effect of particle size on hydrogen release from sodium alanate nanoparticles. ACS Nano 4:5647–5656

    Google Scholar 

  223. Ngene P, van den Berg R, Verkuijlen MHW et al (2011) Reversibility of the hydrogen desorption from NaBH4 confinement in nanoporous. Energy Environ Sci 4:4108–4115

    Google Scholar 

  224. Minella CB, Lindemann I, Nolis P et al (2013) NaBH4 confined in ordered mesoporous carbon. Int J Hydrog Energy 38:8829–8837

    Google Scholar 

  225. Adelhelm P, de Jong KP, de Petra PE (2009) How intimate contact with nanoporous carbon benefits the reversible hydrogen desorption from NaH and NaAlH4. Chem Commun 41:6261–6263

    Google Scholar 

  226. Bhakta RK, Herberg JL, Jacobs B et al (2009) Metal-organic frameworks as templates for nanoscale NaAlH4. J Am Chem Soc 131:13198–13199

    Google Scholar 

  227. Nhakta RK, Maharrey S, Stavila V et al (2012) Thermodynamics and kinetics of NaAlH4 nanocluster decomposition. Phys Chem Chem Phys 14:8160–8169

    Google Scholar 

  228. Stavila V, Bhakta RK, Alam TM et al (2012) Reversible hydrogen storage by NaAlH4 confined within a titanium-functionalized MOF-74(Mg) nanoreactor. ACS Nano 6:9807–9817

    Google Scholar 

  229. Kelly KL, Coronado E, Zhao LL et al (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Google Scholar 

  230. Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325

    Google Scholar 

  231. Seo JK, Khetan A, Seo MH, Kim H et al (2013) First-principles thermodynamic study of the electrochemical stability of Pt nanoparticles in fuel cell applications. J Power Sources 238:137–143

    Google Scholar 

  232. Kim YH, Zhang L, Yu T et al (2013) Droplet-based microreactors for continuous production of palladium nanocrystals with controlled sizes and shapes. Small 9:3462–3467

    Google Scholar 

  233. Chen Y, Fernandes AA, Erbe A (2013) Control of shape and surface crystallography of gold nanocrystals for electrochemical applications. Electrochim Acta 113:810–816

    Google Scholar 

  234. Gong J, Zhou F, Li Z et al (2013) Controlled synthesis of non-epitaxially grown Pd@Ag core–shell nanocrystals of interesting optical performance. Chem Commun 49:4379–4381

    Google Scholar 

  235. Kang Y, Li M, Cai Y et al (2013) Heterogeneous catalysts need not be so “Heterogeneous”: monodisperse Pt nanocrystals by combining shape-controlled synthesis and purification by colloidal recrystallization. J Am Chem Soc 135:2741–2747

    Google Scholar 

  236. Quan Z, Wang Y, Fang J (2013) High-index faceted noble metal nanocrystals. Acc Chem Res 46:191–202

    Google Scholar 

  237. Zhang Q, Le I, Joo JB (2013) Core-shell nanostructured catalysts. Acc Chem Res 46:1816–1824

    Google Scholar 

  238. Guo H, Chen Y, Ping H et al (2013) Facile synthesis of Cu and Cu@Cu–Ni nanocubes and nanowires in hydrophobic solution in the presence of nickel and chloride ions. Nanoscale 5:2394–2402

    Google Scholar 

  239. Sun Y (2013) Controlled synthesis of colloidal silver nanoparticles in organic solutions: empirical rules for nucleation engineering. Chem Soc Rev 42:2497–2511

    Google Scholar 

  240. Burda C, Chen X, Narayanan R et al (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Google Scholar 

  241. Moghimi N, Abdellah M, Thomas JP et al (2013) Bimetallic FeNi concave nanocubes and nanocages. J Am Chem Soc 135:10958–10961

    Google Scholar 

  242. Aslan K, Wu M, Lakowicz JR et al (2007) Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J Am Chem Soc 129:1524–1525

    Google Scholar 

  243. Joo SH, Park JY, Tsung C-K et al (2009) Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat Mater 8:126–131

    Google Scholar 

  244. Joo SH, Choi SJ, Oh I et al (2001) Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412:169–172

    Google Scholar 

  245. Song H, Rioux RM, Hoefelmeyer JD et al (2006) Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: synthesis, characterization, and catalytic properties. J Am Chem Soc 128:3027–3037

    Google Scholar 

  246. Lim D-W, Yoon JW, Ryu KY et al (2012) Magnesium nanocrystals embedded in a metal-organic framework: hybrid hydrogen storage with synergistic effect on physic and chemisorption. Angew Chem Int Ed 51:9814–9817

    Google Scholar 

  247. Park YK, Choi SB, Nam HJ et al (2010) Catalytic nickel nanoparticles embedded in a mesoporous metal-organic framework. Chem Commun 46:3086–3088

    Google Scholar 

  248. Yadav M, Aijaz A, Xu Q (2012) Highly catalytically active palladium nanoparticles incorporated inside metal-organic framework pores by double solvents method. Funct Mater Lett 5:1250039–1250042

    Google Scholar 

  249. Hermannsdörfer J, Friedrich M, Kempe R (2013) Colloidal size effect and metal-particle migration in M@MOF/PCP catalysis. Chem Eur J 19:13652–13657

    Google Scholar 

  250. Li Z, Zeng HC (2013) Surface and bulk integrations of single-layered Au or Ag nanoparticles onto designated crystal planes {110} or {100} of ZIF-8. Chem Mater 25:1761–1768

    Google Scholar 

  251. Wu R, Qian X, Zhou K et al (2013) Highly dispersed Au nanoparticles immobilized on Zr-based metal-organic frameworks as heterostructured catalyst for CO oxidation. J Mater Chem A 1:14294–14299

    Google Scholar 

  252. Pan Y, Yuan B, Li Y et al (2010) Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal-organic framework. Chem Commun 46:2280–2282

    Google Scholar 

  253. Li H, Zhu Z, Zhang F et al (2011) Palladium nanoparticles confined in the cages of MIL-101: an efficient catalyst for the one-pot indole synthesis in water. ACS Catal 1:1604–1612

    MathSciNet  Google Scholar 

  254. Shen L, Wu W, Liang R et al (2013) Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst. Nanoscale 5:9374–9382

    Google Scholar 

  255. Meilikhov M, Yusenko K, Esken D et al (2010) Selective palladium-loaded MIL-101 catalysts. Eur J Inorg Chem 2010:3701–3714

    Google Scholar 

  256. Cheon YE, Suh MP (2009) Enhanced hydrogen storage by palladium nanoparticles fabricated in a redox-active metal-organic framework. Angew Chem Int Ed 48:2899–2903

    Google Scholar 

  257. Aijaz A, Akita T, Tsumori N, Xu Q (2013) Metal-organic framework-immobilized polyhedral metal nanocrystals: reduction at solid–gas interface, metal segregation, core–shell structure, and high catalytic activity. J Am Chem Soc 135:16356–16359

    Google Scholar 

  258. Khajavi H, Stil HA, Kuipers PCEH et al (2013) Shape and transition state selective hydrogenations using egg-shell Pt-MIL-101(Cr) catalyst. ACS Catal 3:2617–2626

    Google Scholar 

  259. Huang Y, Lin Z, Cao R (2011) Palladium nanoparticles encapsulated in a metal-organic framework as efficient heterogeneous catalysts for direct C2 arylation of indoles. Chem Eur J 17:12706–12712

    Google Scholar 

  260. Yadav M, Xu Q (2013) Catalytic chromium reduction using formic acid and metal nanoparticles immobilized in a metal-organic framework. Chem Commun 49:3327–3329

    Google Scholar 

  261. Zlotea C, Campesi R, Cuevas F et al (2013) Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties. J Am Chem Soc 132:2991–2997

    Google Scholar 

  262. Wu F, Qiu L-G, Ke F, Jiang X (2013) Copper nanoparticles embedded in metal-organic framework MIL-101(Cr) as a high performance catalyst for reduction of aromatic nitro compounds. Inorg Chem Commun 32:5–8

    Google Scholar 

  263. Jiang HL, Akita T, Ishida T et al (2011) Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. J Am Chem Soc 133:1304–1313

    Google Scholar 

  264. Long J, Liu H, Liao S et al (2013) Selective oxidation of saturated hydrocarbons using Au–Pd alloy nanoparticles supported on metal-organic frameworks. ACS Catal 3:647–654

    Google Scholar 

  265. Chen G, Wu S, Liu H et al (2013) Palladium supported on an acidic metal-organic framework as an efficient catalyst in selective aerobic oxidation of alcohols. Green Chem 15:230–235

    Google Scholar 

  266. Antonels NC, Meijboom R (2013) Preparation of well-defined dendrimer Encapsulated ruthenium nanoparticles and their evaluation in the reduction of 4-nitrophenol according to the Langmuir–Hinshelwood approach. Langmuir 29:13433–13442

    Google Scholar 

  267. Zhao Y, Zhang J, Song J et al (2011) Ru nanoparticles immobilized on metal-organic framework nanorods by supercritical CO2-methanol solution: highly efficient catalyst. Green Chem 13:2078–2082

    Google Scholar 

  268. Li PZ, Aranishi K, Xu Q (2012) ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane. Chem Commun 48:3173–3175

    Google Scholar 

  269. Huang XC, Lin YY, Zhang JP et al (2006) Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed 45:1557–1559

    Google Scholar 

  270. Hermes S, Schröter MK, Schmid R et al (2005) Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew Chem Int Ed 44:6237–6241

    Google Scholar 

  271. Gu X, Lu ZH, Jiang HL et al (2011) Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J Am Chem Soc 133:11822–11825

    Google Scholar 

  272. Zahmakiran M, Ozkar S (2013) Transition metal nanoparticles in catalysis for the hydrogen generation from the hydrolysis of ammonia borane. Top Catal 56:1171–1183

    Google Scholar 

  273. Chandra M, Xu Q (2007) Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts. J Power Sources 168:135–142

    Google Scholar 

  274. Zhu Q-L, Li J, Xu Q (2013) Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. J Am Chem Soc 135:10210–10213

    Google Scholar 

  275. Yan J-M, Zhang X-B, Han S et al (2008) Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Angew Chem Int Ed 47:2287–2289

    Google Scholar 

  276. Yan J-M, Zhang X-B, Akita T et al (2010) One-step seeding growth of magnetically recyclable Au@Co core−shell nanoparticles: highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane. J Am Chem Soc 132:5326–5327

    Google Scholar 

  277. Li PZ, Aijaz A, Xu Q (2012) Highly dispersed surfactant – free nickel nanoparticles and their remarkable catalytic activity in the hydrolysis of ammonia borane for hydrogen generation. Angew Chem Int Ed 47:6753–6756

    Google Scholar 

  278. Sanyal U, Demirci UB, Jagirdar BR et al (2011) Hydrolysis of ammonia borane as a hydrogen source: fundamental issues and potential solutions towards implementation. ChemSusChem 4:1731–1739

    Google Scholar 

  279. Tranchmontagne DJ, Hunt JR, Yaghi OM (2008) Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 64:8553–8557

    Google Scholar 

  280. Gucan M, Zahmakiran M, Özkar S (2014) Palladium(0) nanoparticles supported on metal organic framework as highly active and reusable nanocatalyst in dehydrogenation of dimethylamine-borane. Appl Catal B Environ 147:394–401

    Google Scholar 

  281. Zheng M, Cheng R, Chen X et al (2005) A novel approach for CO-free H2 production via catalytic decomposition of hydrazine. Int J Hydrog Energy 30:1081–1089

    Google Scholar 

  282. Chen X, Zhang T, Xia L et al (2002) Catalytic decomposition of hydrazine over supported molybdenum nitride catalysts in a monopropellant thruster. Catal Lett 79:21–25

    Google Scholar 

  283. Zheng M, Chen X, Cheng N et al (2005) Catalytic decomposition of hydrazine on iron nitride catalysts. Catal Commun 7:187–191

    Google Scholar 

  284. Chen X, Zhang T, Ying P et al (2002) A novel catalyst for hydrazine decomposition: molybdenum carbide supported on γ-Al2O3. Chem Commun 2:288–289

    Google Scholar 

  285. Chen X, Zhang T, Zheng M et al (2004) The reaction route and active site of catalytic decomposition of hydrazine over molybdenum nitride catalyst. J Catal 224:473–478

    Google Scholar 

  286. Al-Haydari YK, Saleh JM, Matloob MH (1985) Adsorption and decomposition of hydrazine on metal films of iron, nickel, and copper. J Phys Chem 89:3286–3290

    Google Scholar 

  287. Alberas DJ, Kiss J, Liu ZM et al (1992) Surface chemistry of hydrazine on Pt (111). Surf Sci 278:51–61

    Google Scholar 

  288. Prasad J, Gland JL (1991) Hydrazine decomposition on a clean rhodium surface: a temperature programmed reaction spectroscopy study. Langmuir 7:722–726

    Google Scholar 

  289. Hazari N (2010) Homogeneous iron complexes for the conversion of dinitrogen into ammonia and hydrazine. Chem Soc Rev 39:4044–4056

    Google Scholar 

  290. Chin JM, Schrock RR, Müller P (2010) Synthesis of diamidopyrrolyl molybdenum complexes relevant to reduction of dinitrogen to ammonia. Inorg Chem 49:7904–7916

    Google Scholar 

  291. Murakami T, Nishikiori T, Nohira T, Ito Y (2003) Electrolytic synthesis of ammonia in molten salts under atmospheric pressure. J Am Chem Soc 125:334–335

    Google Scholar 

  292. Sridhar S, Srinivasan T, Virendra U, Khan AA (2003) Pervaporation of ketazine aqueous layer in production of hydrazine hydrate by peroxide process. Chem Eng J 94:51–56

    Google Scholar 

  293. Hayashi H (1998) Hydrazine synthesis: commercial routes, catalysis and intermediates. Res Chem Intermed 24:183–196

    Google Scholar 

  294. Hayashi H (1990) Hydrazine synthesis by a catalytic oxidation process. Catal Rev 32:229–277

    Google Scholar 

  295. Singh KS, Zhang X-B, Xu Q (2009) Room-temperature hydrogen generation from hydrous hydrazine for chemical hydrogen storage. J Am Chem Soc 131:9894–9895

    Google Scholar 

  296. Singh KS, Xu Q (2010) Bimetallic Ni−Pt nanocatalysts for selective decomposition of hydrazine in aqueous solution to hydrogen at room temperature for chemical hydrogen storage. Inorg Chem 49:6148–6152

    Google Scholar 

  297. Singh KS, Xu Q (2010) Bimetallic nickel-iridium nanocatalysts for hydrogen generation by decomposition of hydrous hydrazine. Chem Commun 46:6545–6547

    Google Scholar 

  298. Singh KS, Iizuka Y, Xu Q (2011) Nickel-palladium nanoparticle catalyzed hydrogen generation from hydrous hydrazine for chemical hydrogen storage. Int J Hydrog Energy 36:11794–11801

    Google Scholar 

  299. Singh KS, Lu ZH, Xu Q (2011) Temperature-induced enhancement of catalytic performance in selective hydrogen generation from hydrous hydrazine with Ni-based nanocatalysts for chemical hydrogen storage. Eur J Inorg Chem 2011:2232–2237

    Google Scholar 

  300. Singh KS, Singh KA, Aranishi K, Xu Q (2011) Noble-metal-free bimetallic nanoparticle-catalyzed selective hydrogen generation from hydrous hydrazine for chemical hydrogen storage. J Am Chem Soc 133:19638–19641

    Google Scholar 

  301. Singh KS, Xu Q (2009) Complete conversion of hydrous hydrazine to hydrogen at room temperature for chemical hydrogen storage. J Am Chem Soc 131:18032–18033

    Google Scholar 

  302. Singh KA, Xu Q (2013) Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 5:652–676

    Google Scholar 

  303. Wang J, Zhang X, Wang Z, Wang L, Zhang Y (2012) Rhodium–nickel nanoparticles grown on graphene as highly efficient catalyst for complete decomposition of hydrous hydrazine at room temperature for chemical hydrogen storage. Energy Environ Sci 5:6885–6888

    Google Scholar 

  304. Tong DG, Tang DM, Chu W, Gua GF, Wu P (2013) Monodisperse Ni3Fe single-crystalline nanospheres as a highly efficient catalyst for the complete conversion of hydrous hydrazine to hydrogen at room temperature. J Mater Chem A 1:6425–6432

    Google Scholar 

  305. Singh KA, Xu Q (2013) Metal-organic framework supported bimetallic Ni-Pt nanoparticles as high-performance catalysts for hydrogen generation from hydrazine in aqueous solution. Chem Cat Chem 5:3000–3004

    Google Scholar 

  306. Hayashi H, Côté AP, Furukawa H et al (2007) Zeolite imidazolate frameworks. Nat Mater 6:501–506

    Google Scholar 

  307. Johnson TC, Morris DJ, Wills M (2010) Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem Soc Rev 39:81–88

    Google Scholar 

  308. Joó F (2008) Breakthroughs in hydrogen storage – formic acid as a sustainable storage material for hydrogen. ChemSusChem 1:805–808

    Google Scholar 

  309. Zhou X, Huang Y, Xing W, Liu C, Liao J, Lu T (2008) High-quality hydrogen from the catalyzed decomposition of formic acid by Pd–Au/C and Pd–Ag/C. Chem Commun 2008:3540–3542

    Google Scholar 

  310. Himeda Y, Miyazawa S, Horose T (2011) Interconversion between formic acid and H2/CO2 using rhodium and ruthenium catalysts for CO2 fixation and H2 storage. ChemSusChem 4:487–493

    Google Scholar 

  311. Faur Ghenciu A (2002) Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Curr Opin Solid State Mater Sci 6:389–399

    Google Scholar 

  312. Morris DJ, Clarkson GJ, Wills M (2009) Insights into hydrogen generation from formic acid using ruthenium complexes. Organometallics 28:4133–4140

    Google Scholar 

  313. Gao Y, Kuncheria J, Puddephatt RJ, Yap GPA (1998) An efficient binuclear catalyst for decomposition of formic acid. Chem Commun 21:2365–2366

    Google Scholar 

  314. Fukuzumi S, Kobayashi T, Suenobu T (2010) Unusually large tunneling effect on highly efficient generation of hydrogen and hydrogen isotopes in pH-selective decomposition of formic acid catalyzed by a heterodinuclear iridium−ruthenium complex in water. J Am Chem Soc 132:1496–1497

    Google Scholar 

  315. Tedsree K, Li T, Jones S, Chan CWA, Yu KMK, Bagot PAJ, Marquis EA, Smith GDW, Tsang SCE (2011) Hydrogen production from formic acid decomposition at room temperature using a Ag−Pd core−shell nanocatalyst. Nat Nano 6:302–307

    Google Scholar 

  316. Gan W, Dyson PJ, Laurenczy G (2013) Heterogeneous silica-supported ruthenium phosphine catalysts for selective formic acid decomposition. ChemCatChem 10:3124–3130

    Google Scholar 

  317. Bulushev DA, Beloshapkin S, Ross JRH (2010) Hydrogen from formic acid decomposition over Pd and Au catalysts. Catal Today 154:7–12

    Google Scholar 

  318. Wang Z-L, Yan J-M, Wang H-L, Ping Y, Jiang Q (2012) Pd/C synthesized with citric acid: an efficient catalyst for hydrogen generation from formic acid/sodium formate. Sci Rep 2(598):1–6

    MATH  Google Scholar 

  319. Yadav M, Singh AK, Tsumori N, Xu Q (2012) Palladium silica nanosphere-catalyzed decomposition of formic acid for chemical hydrogen storage. J Mater Chem 22:19146–19150

    Google Scholar 

  320. Zhou X, Huang Y, Liu C, Lioa J, Lu T, Xing W (2010) Available hydrogen from formic acid decomposed by rare earth elements promoted Pd-Au/C catalysts at low temperature. ChemSusChem 3:1379–1382

    Google Scholar 

  321. Martis M, Mori K, Fujiwara Ke et al (2013) Amine-functionalized MIL-125 with imbedded palladium nanoparticles as an efficient catalyst for dehydrogenation of formic acid at ambient temperature. J Phys Chem C 117:22805–22810

    Google Scholar 

  322. Dan-Hardi M, Serre C, Frot T et al (2009) New photoactive crystalline highly porous titanium(IV) dicarboxylate. J Am Chem Soc 131:10857–10859

    Google Scholar 

  323. Fu Y, Sun D, Chen Y et al (2012) An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chem Int Ed 124:3420–3423

    Google Scholar 

  324. Yadav M, Akita T, Tsumori N et al (2012) Strong metal-molecular support interaction (SMMSI): amine-functionalized gold nanoparticles encapsulated in silica nanospheres highly active for catalytic decomposition of formic acid. J Mater Chem 22:12582–12586

    Google Scholar 

  325. Li Y, Xie L, Li Y et al (2009) Metal-organic-framework-based catalyst for highly efficient H2 generation from aqueous NH3BH3 solution. Chem Eur J 15:8951–8954

    Google Scholar 

  326. Li Y, Song P, Zheng J et al (2010) Promoted H2 generation from NH3BH3 thermal dehydrogenation catalyzed by metal-organic framework based catalysts. Chem Eur J 16:10887–10892

    Google Scholar 

  327. Song P, Li Y, Li W et al (2011) A highly efficient Co(0) catalyst derived from metal-organic framework for the hydrolysis of ammonia borane. Int J Hydrog Energy 36:10468–10473

    Google Scholar 

  328. Li Q, Kim H (2012) Hydrogen production from NaBH4 hydrolysis via Co-ZIF-9 catalyst. Fuel Process Technol 100:43–48

    Google Scholar 

  329. Schlesinger HI, Brown HC, Finholt AB, Gilbreath JR, Hockstra HR, Hydo EK (1953) Sodium borohydride as the hydrogen supplier for proton exchange membrane fuel cell systems. J Am Chem Soc 75:215–219

    Google Scholar 

  330. Brown HC, Brown CA (1962) New, highly active metal catalysts for the hydrolysis of borohydride. J Am Chem Soc 84:1493–1494

    Google Scholar 

  331. Demirci UB, Akdim O, Andrieux J, Hannauer J, Chamoun R, Miele P (2010) Sodium borohydride hydrolysis as hydrogen generator: issues, state of the art and applicability upstream from a fuel cell. Fuel Cells 10:335–350

    Google Scholar 

  332. Jeong SU, Kim RK, Cho EA, Kim HJ, Nam SW, Oh I, Hong SA, Kim SH (2005) A study on hydrogen generation from NaBH4 solution using the high-performance Co-B catalyst. J Power Sources 144:129–134

    Google Scholar 

  333. Wu C, Wu F, Bai Y, Yi B, Zhang H (2005) Cobalt boride catalysts for hydrogen generation from alkaline NaBH4 solution. Mater Lett 59:1748–1751

    Google Scholar 

  334. Walter JC, Zurawski A, Montgomery D, Thornburg M, Revankar S (2008) Sodium borohydride hydrolysis kinetics comparison for nickel, cobalt, and ruthenium boride catalysts. J Power Sources 179:335–339

    Google Scholar 

  335. Patel N, Guella G, Kale A, Miotello A, Patton B, Zanchetta C, Mirenghi L, Rotolo P (2007) Thin films of Co–B prepared by pulsed laser deposition as efficient catalysts in hydrogen producing reactions. Appl Catal A 323:18–24

    Google Scholar 

  336. Patel N, Fernandes R, Guella G, Kale A, Miotello A, Patton B, Zanchetta C (2008) Structured and nanoparticle assembled Co-B thin films prepared by pulsed laser deposition: a very efficient catalyst for hydrogen production. J Phys Chem C 112:6968–6976

    Google Scholar 

  337. Gupta S, Patek N, Fernandes R, Kothari DC, Miotello KA (2013) Mesoporous Co–B nanocatalyst for efficient hydrogen production by hydrolysis of sodium borohydride. Int J Hydrog Energy 38:14685–14692

    Google Scholar 

  338. Figen AK (2013) Dehydrogenation characteristics of ammonia borane via boron-based catalysts (Co–B, Ni–B, Cu–B) under different hydrolysis conditions. Int J Hydrog Energy 38:9186–9197

    Google Scholar 

  339. Figen AK, Coşkuner B (2013) A novel perspective for hydrogen generation from ammonia borane (NH3BH3) with Co–B catalysts: “Ultrasonic Hydrolysis”. Int J Hydrog Energy 38:2824–2835

    Google Scholar 

  340. Ma J, Xu L, Xu L, Wang H, Xu S, Li H, Xie S, Li H (2013) Highly dispersed Pd on Co–B amorphous alloy: facile synthesis via galvanic replacement reaction and synergetic effect between Pd and Co. ACS Catal 3:985–992

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the fine work of the talented and dedicated graduate students, postdoctoral fellows, and colleagues who have worked with us in this area and whose names can be found in the references. We are pleased to acknowledge AIST and METI of Japan for financial support. Y. Y. Zhao is grateful to the Project Grants 521 Talents Cultivation of Zhejiang Sci-Tech University and thanks to Zhejiang Provincial Top Key Academic Discipline of Chemical Engineering and Technology and National Natural Science Foundation of China (No. 21273202) for providing financial support for stay in AIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhao, Y., Xu, Q. (2015). Metal-Organic Frameworks as Platforms for Hydrogen Generation from Chemical Hydrides. In: Wong, WY. (eds) Organometallics and Related Molecules for Energy Conversion. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46054-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46054-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46053-5

  • Online ISBN: 978-3-662-46054-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics