Skip to main content

Recent Development in Water Oxidation Catalysts Based on Manganese and Cobalt Complexes

  • Chapter
Organometallics and Related Molecules for Energy Conversion

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Energy directly harvested from sunlight offers an ultimate method of meeting the needs for clean energy with minimal impact on our environment. Intensive research efforts are currently being put on the development of efficient conversion system that can transform solar energy into fuel via light-driven water splitting to generate H2 and O2, learning from Nature’s photosynthesis to collect and store solar energy in chemical bonds. Especially, the development of efficient water oxidation catalysts is one of the key issues for achieving artificial photosynthetic devices. From a practical point of view, it is highly desirable to replace noble metal catalysts, which have been quite successful so far, by earth-abundant metal catalysts. In recent years, there has been noticeable progress in the development of water oxidation catalysts (WOCs) based on earth-abundant metals. This review chapter covers the most significant achievements in WOCs based on manganese and cobalt complexes, with emphasis on recent developments in the last three years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. BP Statistical review of world energy 2013. http://www.bp.com/statisticalreview. Accessed 25 Apr 2014

  2. Nocera DG (2012) The artificial leaf. Acc Chem Res 45(5):767–776

    MathSciNet  Google Scholar 

  3. Kim H-S, Lee J-W, Yantara N et al (2013) High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett 13(6):2412–2417

    Google Scholar 

  4. Mathew S, Yella A, Gao P et al (2014) Dye-sensitized solar cells with 13 % efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6(3):242–247

    Google Scholar 

  5. Haid S, Marszalek M, Mishra A et al (2012) Significant improvement of dye-sensitized solar cell performance by small structural modification in π-conjugated donor–acceptor dyes. Adv Funct Mater 22(6):1291–1302

    Google Scholar 

  6. Chirilă A, Reinhard P, Pianezzi F et al (2013) Potassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cells. Nat Mater 12(12):1107–1111

    Google Scholar 

  7. Yang W, Duan H-S, Bob B et al (2012) Novel solution processing of high-efficiency earth-abundant Cu2ZnSn(S, Se)4 solar cells. Adv Mater 24(47):6323–6329

    Google Scholar 

  8. Karunadasa HI, Montalvo E, Sun Y et al (2012) A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335(6069):698–702

    Google Scholar 

  9. Voiry D, Yamaguchi H, Li J et al (2013) Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater 12(9):850–855

    Google Scholar 

  10. Du P, Eisenberg R (2012) Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ Sci 5(3):6012–6021

    Google Scholar 

  11. Yang S, Gong Y, Zhang J et al (2013) Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv Mater 25(17):2452–2456

    Google Scholar 

  12. Hull JF, Himeda Y, Wang W-H et al (2012) Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nat Chem 4(5):383–388

    Google Scholar 

  13. Chun J, Kang S, Kang N et al (2013) Microporous organic networks bearing metal-salen species for mild CO2 fixation to cyclic carbonates. J Mater Chem A 1(18):5517–5523

    Google Scholar 

  14. Wong W-L, Lee LYS, Ho K-P et al (2014) A green catalysis of CO2 fixation to aliphatic cyclic carbonates by a new ionic liquid system. Appl Catal A 472:160–166

    Google Scholar 

  15. Umena Y, Kawakami K, Shen J-R et al (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473(7345):55–60

    Google Scholar 

  16. Ferreira KN, Iverson TM, Maghlaoui K et al (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303(5665):1831–1838

    Google Scholar 

  17. Rutherford AW, Faller P (2003) Photosystem II: evolutionary perspectives. Philos Trans R Soc Lond B Biol Sci 358(1429):245–253

    Google Scholar 

  18. Loll B, Kern J, Saenger W et al (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438(7070):1040–1044

    Google Scholar 

  19. Sproviero EM, Gascón JA, McEvoy JP et al (2008) Computational studies of the O2-evolving complex of photosystem II and biomimetic oxomanganese complexes. Coord Chem Rev 252(3–4):395–415

    Google Scholar 

  20. Guskov A, Kern J, Gabdulkhakov A et al (2009) Cyanobacterial photosystem II at 2.9 Å resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16(3):334–342

    Google Scholar 

  21. Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution–I. A linear four step mechanism. Photochem Photobiol 11(6):457–475

    Google Scholar 

  22. Yagi M, Kaneko M (2001) Molecular catalysts for water oxidation. Chem Rev 101(1):21–36

    Google Scholar 

  23. Mayer JM (2004) Proton-coupled electron transfer: a reaction chemist's view. Annu Rev Phys Chem 55:363–390

    Google Scholar 

  24. Jablonsky J, Lazar D (2008) Evidence for intermediate S-states as initial phase in the process of oxygen-evolving complex oxidation. Biophys J 94(7):2725–2736

    Google Scholar 

  25. Rutherford AW, Boussac A (2004) Water photolysis in biology. Science 303(5665):1782–1784

    Google Scholar 

  26. Yano J, Kern J, Sauer K et al (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314(5800):821–825

    Google Scholar 

  27. Petrie S, Stranger R, Gatt P et al (2007) Bridge over troubled water: resolving the competing photosystem II crystal structures. Chem Eur J 13(18):5082–5089

    Google Scholar 

  28. Meyer TJ, Huynh MHV, Thorp HH (2007) The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II. Angew Chem Int Ed 46(28):5284–5304

    Google Scholar 

  29. Dau H, Zaharieva I (2009) Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc Chem Res 42(12):1861–1870

    Google Scholar 

  30. Sartorel A, Bonchio M, Campagna S et al (2013) Tetrametallic molecular catalysts for photochemical water oxidation. Chem Soc Rev 42(6):2262–2280

    Google Scholar 

  31. Joya KS, Vallés-Pardo JL, Joya YF et al (2013) Molecular catalytic assemblies for electrodriven water splitting. ChemPlusChem 78(1):35–47

    Google Scholar 

  32. Artero V, Fontecave M (2013) Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis? Chem Soc Rev 42(6):2338–2356

    Google Scholar 

  33. Pecoraro VL, Baldwin MJ, Gelasco A (1994) Interaction of manganese with dioxygen and its reduced derivatives. Chem Rev 94(3):807–826

    Google Scholar 

  34. Manchanda R, Brudvig GW, Crabtree RH (1995) High-valent oxomanganese clusters: structural and mechanistic work relevant to the oxygen-evolving center in photosystem II. Coord Chem Rev 144:1–38

    Google Scholar 

  35. Rüttinger W, Dismukes GC (1997) Synthetic water-oxidation catalysts for artificial photosynthetic water oxidation†. Chem Rev 97(1):1–24

    Google Scholar 

  36. Mukhopadhyay S, Mandal SK, Bhaduri S et al (2004) Manganese clusters with relevance to Photosystem II. Chem Rev 104(9):3981–4026

    Google Scholar 

  37. Young KJ, Martini LA, Milot RL et al (2012) Light-driven water oxidation for solar fuels. Coord Chem Rev 256(21–22):2503–2520

    Google Scholar 

  38. Matsushita T, Fujiwara M, Shono T (1981) Reactions of dichloromanganese(IV) Schiff base complexes with water as model for oxidation in photosystem II. Chem Lett 10(5):631–634

    Google Scholar 

  39. Fujiwara M, Matsushita T, Shono T (1985) Reaction of dichloromanganese(IV) Schiff-base complexes with water as a model for water oxidation in photosystem II. Polyhedron 4(11):1895–1900

    Google Scholar 

  40. Matsushita T, Spencer L, Sawyer DT (1988) Synthesis and characterization of binuclear manganese complexes: redox models for the water oxidation cofactor of photosystem II. Inorg Chem 27(7):1167–1173

    Google Scholar 

  41. Ramaraj R, Kira A, Kaneko M (1986) Oxygen evolution by water oxidation mediated by heterogeneous manganese complexes. Angew Chem Int Ed 25(9):825–827

    Google Scholar 

  42. Naruta Y, M-a S, Sasaki T (1994) Oxygen evolution by oxidation of water with manganese porphyrin dimers. Angew Chem Int Ed 33(18):1839–1841

    Google Scholar 

  43. Geselowitz D, Meyer TJ (1990) Water oxidation by μ-oxobis[bis(bipyridine)oxoruthenium(V)]4+. An oxygen-labeling study. Inorg Chem 29(19):3894–3896

    Google Scholar 

  44. Limburg J, Vrettos JS, Liable-Sands LM et al (1999) A functional model for O-O bond formation by the O2-evolving complex in Photosystem II. Science 283(5407):1524–1527

    Google Scholar 

  45. Limburg J, Vrettos JS, Chen H et al (2001) Characterization of the O2-evolving reaction catalyzed by [(terpy)(H2O)MnIII(O)2MnIV(OH2)(terpy)](NO3)3 (terpy = 2,2′:6,2ʺ-Terpyridine). J Am Chem Soc 123(3):423–430

    Google Scholar 

  46. Poulsen AK, Rompel A, McKenzie CJ (2005) Water oxidation catalyzed by a dinuclear Mn complex: a functional model for the oxygen-evolving center of Photosystem II. Angew Chem Int Ed 44(42):6916–6920

    Google Scholar 

  47. Chen TR, Olack G et al (2006) Speciation of the catalytic oxygen evolution system: [MnIII/IV2(μ-O)2(terpy)2(H2O)2](NO3)3 + HSO5. Inorg Chem 46(1):34–43

    Google Scholar 

  48. Tagore R, Crabtree RH, Brudvig GW (2008) Oxygen evolution catalysis by a dimanganese complex and its relation to photosynthetic water oxidation. Inorg Chem 47(6):1815–1823

    Google Scholar 

  49. Nayak S, Nayek HP, Dehnen S et al (2011) Trigonal propeller-shaped [MnIII 3MIINa] complexes (M = Mn, Ca): structural and functional models for the dioxygen evolving centre of PSII. Dalton Trans 40(12):2699–2702

    Google Scholar 

  50. Seidler-Egdal RK, Nielsen A, Bond AD et al (2011) High turnover catalysis of water oxidation by Mn(II) complexes of monoanionic pentadentate ligands. Dalton Trans 40(15):3849–3858

    Google Scholar 

  51. Yagi M, Narita K (2004) Catalytic O2 evolution from water induced by adsorption of [(OH2)(Terpy)Mn(μ-O)2Mn(Terpy)(OH2)]3+ complex onto clay compounds. J Am Chem Soc 126(26):8084–8085

    Google Scholar 

  52. Baffert C, Romain S, Richardot A et al (2005) Electrochemical and chemical formation of [Mn4IVO5(terpy)4(H2O)2]6+, in relation with the Photosystem II oxygen-evolving center model [Mn2III, IVO2(terpy)2(H2O)2]3+. J Am Chem Soc 127(39):13694–13704

    Google Scholar 

  53. Kurz P, Berggren G, Anderlund MF et al (2007) Oxygen evolving reactions catalysed by synthetic manganese complexes: a systematic screening. Dalton Trans 38:4258–4261

    Google Scholar 

  54. Kanady JS, Tsui EY, Day MW et al (2011) A synthetic model of the Mn3Ca subsite of the oxygen-evolving complex in Photosystem II. Science 333(6043):733–736

    Google Scholar 

  55. Beckmann K, Uchtenhagen H, Berggren G et al (2008) Formation of stoichiometrically 18O-labelled oxygen from the oxidation of 18O-enriched water mediated by a dinuclear manganese complex-a mass spectrometry and EPR study. Energy Environ Sci 1(6):668–676

    Google Scholar 

  56. Shevela D, Koroidov S, Najafpour MM et al (2011) Calcium manganese oxides as oxygen evolution catalysts: O2 Formation Pathways Indicated by 18O-Labelling Studies. Chem Eur J 17(19):5415–5423

    Google Scholar 

  57. Hatakeyama M, Nakata H, Wakabayashi M et al (2012) New reaction model for O–O bond formation and O2 evolution catalyzed by dinuclear manganese complex. J Phys Chem A 116(26):7089–7097

    Google Scholar 

  58. Ramaraj R, Kira A, Kaneko M (1987) Heterogeneous water oxidation by a dinuclear manganese complex. Chem Lett 16(2):261–264

    Google Scholar 

  59. Narita K, Kuwabara T, Sone K et al (2006) Characterization and activity analysis of catalytic water oxidation induced by hybridization of [(OH2)(terpy)Mn(μ-O)2Mn(terpy)(OH2)]3+ and clay compounds. J Phys Chem B 110(46):23107–23114

    Google Scholar 

  60. Yagi M, Narita K, Maruyama S et al (2007) Artificial model of photosynthetic oxygen evolving complex: catalytic O2 production from water by di-μ-oxo manganese dimers supported by clay compounds. Biochim Biophys Acta Bioenerg 1767(6):660–665

    Google Scholar 

  61. Kurz P (2009) Oxygen evolving reactions catalysed by manganese-oxo-complexes adsorbed on clays. Dalton Trans 31:6103–6108

    Google Scholar 

  62. Berends H-M, Homburg T, Kunz I et al (2011) K10 montmorillonite supported manganese catalysts for the oxidation of water to dioxygen. Appl Clay Sci 53(2):174–180

    Google Scholar 

  63. Gao Y, Crabtree RH, Brudvig GW (2012) Water oxidation catalyzed by the tetranuclear Mn complex [MnIV 4O5(terpy)4(H2O)2](ClO4)6. Inorg Chem 51(7):4043–4050

    Google Scholar 

  64. Yamazaki H, Igarashi S, Nagata T et al (2012) Substituent effects on core structures and heterogeneous catalytic activities of MnIII(μ-O)2MnIV dimers with 2,2′:6′,2″-terpyridine derivative ligands for water oxidation. Inorg Chem 51(3):1530–1539

    Google Scholar 

  65. Li G, Sproviero EM, Snoeberger Iii RC et al (2009) Deposition of an oxomanganese water oxidation catalyst on TiO2 nanoparticles: computational modeling, assembly and characterization. Energy Environ Sci 2(2):230–238

    Google Scholar 

  66. Chen CM-N, Duboc C et al (2005) New linear high-valent tetranuclear manganese-oxo cluster relevant to the oxygen-evolving complex of photosystem II with oxo, hydroxo, and aqua coordinated to a single Mn(IV). Inorg Chem 44(25):9567–9573

    Google Scholar 

  67. Najafpour M, Boghaei D (2009) Heterogeneous water oxidation by bidentate Schiff base manganese complexes in the presence of cerium(IV) ammonium nitrate. Transit Met Chem 34(4):367–372

    Google Scholar 

  68. Najafpour MM, Isaloo MA (2014) Mechanism of water oxidation by nanolayered manganese oxide: a step forward. RSC Adv 4(13):6375–6378

    Google Scholar 

  69. Junge H, Marquet N, Kammer A et al (2012) Water oxidation with molecularly defined iridium complexes: insights into homogeneous versus heterogeneous catalysis. Chem Eur J 18(40):12749–12758

    Google Scholar 

  70. Karlsson EA, Lee B-L, Åkermark T et al (2011) Photosensitized water oxidation by use of a bioinspired manganese catalyst. Angew Chem Int Ed 50(49):11715–11718

    Google Scholar 

  71. Huang P, Magnuson A, Lomoth R et al (2002) Photo-induced oxidation of a dinuclear Mn2II, II complex to the Mn2III, IV state by inter- and intramolecular electron transfer to RuIIItris-bipyridine. J Inorg Biochem 91(1):159–172

    Google Scholar 

  72. Lee B-L, Kärkäs MD, Johnston EV et al (2010) Synthesis and characterization of oligonuclear Ru, Co and Cu oxidation catalysts. Eur J Inorg Chem 2010(34):5462–5470

    Google Scholar 

  73. Arafa WAA, Karkas MD, Lee B-L et al (2014) Dinuclear manganese complexes for water oxidation: evaluation of electronic effects and catalytic activity. Phys Chem Chem Phys. doi:10.1039/C3CP54800G

    Google Scholar 

  74. Sun L, Berglund H, Davydov R et al (1997) Binuclear ruthenium–manganese complexes as simple artificial models for Photosystem II in green plants. J Am Chem Soc 119(30):6996–7004

    Google Scholar 

  75. Sun L, Hammarstrom L, Norrby T et al. (1997) Intramolecular electron transfer from coordinated manganese(II) to photogenerated ruthenium(III). Chem Commun (6):607–608

    Google Scholar 

  76. Magnuson A, Frapart Y, Abrahamsson M et al (1998) A biomimetic model system for the water oxidizing triad in Photosystem II. J Am Chem Soc 121(1):89–96

    Google Scholar 

  77. Sun L, Raymond MK, Magnuson A et al (2000) Towards an artificial model for Photosystem II: a manganese(II, II) dimer covalently linked to ruthenium(II) tris-bipyridine via a tyrosine derivative. J Inorg Biochem 78(1):15–22

    Google Scholar 

  78. Burdinski D, Bothe E, Wieghardt K (1999) Synthesis and characterization of tris(bipyridyl)ruthenium(II)-modified mono-, di-, and trinuclear manganese complexes as electron-transfer models for Photosystem II. Inorg Chem 39(1):105–116

    Google Scholar 

  79. Burdinski D, Wieghardt K, Steenken S (1999) Intramolecular electron transfer from Mn or ligand phenolate to photochemically generated RuIII in multinuclear Ru/Mn complexes. Laser flash photolysis and EPR studies on Photosystem II models. J Am Chem Soc 121(46):10781–10787

    Google Scholar 

  80. Yagi M, Toda M, Yamada S et al (2010) An artificial model of photosynthetic photosystem II: visible-light-derived O2 production from water by a di-μ-oxo-bridged manganese dimer as an oxygen evolving center. Chem Commun 46(45):8594–8596

    Google Scholar 

  81. Sato S, White JM (1980) Photodecomposition of water over Pt/TiO2 catalysts. Chem Phys Lett 72(1):83–86

    Google Scholar 

  82. McNamara WR, Snoeberger RC, Li G et al (2008) Acetylacetonate anchors for robust functionalization of TiO2 nanoparticles with Mn(II)–terpyridine complexes. J Am Chem Soc 130(43):14329–14338

    Google Scholar 

  83. Li G, Sproviero EM, McNamara WR et al (2009) Reversible visible-light photooxidation of an oxomanganese water-oxidation catalyst covalently anchored to TiO2 nanoparticles. J Phys Chem B 114(45):14214–14222

    Google Scholar 

  84. Gao Y, Liu J, Wang M et al (2007) Synthesis and characterization of manganese and copper corrole xanthene complexes as catalysts for water oxidation. Tetrahedron 63(9):1987–1994

    Google Scholar 

  85. Privalov T, Sun L, Åkermark B et al (2007) A computational study of O–O bond formation catalyzed by mono- and bis-MnIV–corrole complexes. Inorg Chem 46(17):7075–7086

    Google Scholar 

  86. Gao Y, Tr Å, Liu J et al (2009) Nucleophilic attack of hydroxide on a MnV oxo Complex: a model of the O–O bond formation in the oxygen evolving complex of Photosystem II. J Am Chem Soc 131(25):8726–8727

    Google Scholar 

  87. Dogutan DK, McGuire R, Nocera DG (2011) Electocatalytic water oxidation by cobalt(III) hangman β-octafluoro corroles. J Am Chem Soc 133(24):9178–9180

    Google Scholar 

  88. Barnett SM, Goldberg KI, Mayer JM (2012) A soluble copper–bipyridine water-oxidation electrocatalyst. Nat Chem 4(6):498–502

    Google Scholar 

  89. Mullins CS, Pecoraro VL (2008) Reflections on small molecule manganese models that seek to mimic photosynthetic water oxidation chemistry. Coord Chem Rev 252(3–4):416–443

    Google Scholar 

  90. Cady CW, Crabtree RH, Brudvig GW (2008) Functional models for the oxygen-evolving complex of photosystem II. Coord Chem Rev 252(3–4):444–455

    Google Scholar 

  91. Ruettinger WF, Campana C, Dismukes GC (1997) Synthesis and characterization of Mn4O4L6 complexes with cubane-like core structure: a new class of models of the active site of the photosynthetic water oxidase. J Am Chem Soc 119(28):6670–6671

    Google Scholar 

  92. Ruettinger WF, Ho DM, Dismukes GC (1999) Protonation and dehydration reactions of the Mn4O4L6 cubane and synthesis and crystal structure of the oxidized cubane [Mn4O4L6]+: a model for the photosynthetic water oxidizing complex. Inorg Chem 38(6):1036–1037

    Google Scholar 

  93. Ruettinger W, Yagi M, Wolf K et al (2000) O2 evolution from the manganese–oxo cubane core Mn4O46+: a molecular mimic of the photosynthetic water oxidation enzyme? J Am Chem Soc 122(42):10353–10357

    Google Scholar 

  94. Yagi M, Wolf KV, Baesjou PJ et al (2001) Selective photoproduction of O2 from the Mn4O4 cubane core: a structural and functional model for the photosynthetic water-oxidizing complex. Angew Chem Int Ed 40(15):2925–2928

    Google Scholar 

  95. Wu J-Z, De Angelis F, Carrell TG et al (2005) Tuning the photoinduced O2-evolving reactivity of Mn4O4 7+, Mn4O4 6+, and Mn4O3(OH)6+ manganese–oxo cubane complexes. Inorg Chem 45(1):189–195

    Google Scholar 

  96. Ruettinger WF, Dismukes GC (2000) Conversion of core oxos to water molecules by 4e−/4H+ reductive dehydration of the Mn4O26+ core in the manganese–oxo cubane complex Mn4O4(Ph2PO2)6: a partial model for photosynthetic water binding and activation. Inorg Chem 39(5):1021–1027

    Google Scholar 

  97. Brimblecombe R, Swiegers GF, Dismukes GC et al (2008) Sustained water oxidation photocatalysis by a bioinspired manganese cluster. Angew Chem Int Ed 47(38):7335–7338

    Google Scholar 

  98. Brimblecombe R, Koo A, Dismukes GC et al (2010) Solar driven water oxidation by a bioinspired manganese molecular catalyst. J Am Chem Soc 132(9):2892–2894

    Google Scholar 

  99. Hocking RK, Brimblecombe R, Chang L-Y et al (2011) Water-oxidation catalysis by manganese in a geochemical-like cycle. Nat Chem 3(6):461–466

    Google Scholar 

  100. Jiao F, Frei H (2010) Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. Chem Commun 46(17):2920–2922

    Google Scholar 

  101. Singh A, Hocking RK, Chang SLY et al (2013) Water oxidation catalysis by nanoparticulate manganese oxide thin films: probing the effect of the manganese precursors. Chem Mater 25(7):1098–1108

    Google Scholar 

  102. Lassalle-Kaiser B, Hureau C, Pantazis DA et al (2010) Activation of a water molecule using a mononuclear Mn complex: from Mn-aquo, to Mn-hydroxo, to Mn-oxyl via charge compensation. Energy Environ Sci 3(7):924–938

    Google Scholar 

  103. Hansen RE, Das S (2014) Biomimetic di-manganese catalyst cage-isolated in a MOF: robust catalyst for water oxidation with Ce(IV), a non-O-donating oxidant. Energy Environ Sci 7(1):317–322

    Google Scholar 

  104. Shafirovich VY, Khannanov NK, Strelets VV (1980) Chemical and light-induced catalytic water oxidation. Nouv J Chim 4(2):81–84

    Google Scholar 

  105. Brunschwig BS, Chou MH, Creutz C et al (1983) Mechanisms of water oxidation to oxygen: cobalt(IV) as an intermediate in the aquocobalt(II)-catalyzed reaction. J Am Chem Soc 105(14):4832–4833

    Google Scholar 

  106. Ghosh PK, Brunschwig BS, Chou M et al (1984) Thermal and light-induced reduction of the ruthenium complex cation Ru(bpy)3 3+ in aqueous solution. J Am Chem Soc 106(17):4772–4783

    Google Scholar 

  107. Kanan MW, Nocera DG (2008) In-situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321(5892):1072–1075

    Google Scholar 

  108. Lutterman DA, Surendranath Y, Nocera DG (2009) A self-healing oxygen-evolving catalyst. J Am Chem Soc 131(11):3838–3839

    Google Scholar 

  109. Dau H, Limberg C, Reier T et al (2010) The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2(7):724–761

    Google Scholar 

  110. McAlpin JG, Surendranath Y, Dincǎ M et al (2010) EPR evidence for Co(IV) species produced during water oxidation at neutral pH. J Am Chem Soc 132(20):6882–6883

    Google Scholar 

  111. Kanan MW, Surendranath Y, Nocera DG (2009) Cobalt-phosphate oxygen-evolving compound. Chem Soc Rev 38(1):109–114

    Google Scholar 

  112. Risch M, Khare V, Zaharieva I et al (2009) Cobalt–oxo core of a water-oxidizing catalyst film. J Am Chem Soc 131(20):6936–6937

    Google Scholar 

  113. Kanan MW, Yano J, Surendranath Y et al (2010) Structure and valency of a cobalt–phosphate water oxidation catalyst determined by in Situ X-ray spectroscopy. J Am Chem Soc 132(39):13692–13701

    Google Scholar 

  114. Leung C-F, Ng S-M, Ko C-C et al (2012) A cobalt(II) quaterpyridine complex as a visible light-driven catalyst for both water oxidation and reduction. Energy Environ Sci 5(7):7903–7907

    Google Scholar 

  115. Jiao F, Frei H (2010) Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ Sci 3(8):1018–1027

    Google Scholar 

  116. Stracke JJ, Finke RG (2011) Electrocatalytic water oxidation beginning with the cobalt polyoxometalate [Co4(H2O)2(PW9O34)2]10−: identification of heterogeneous CoO x as the dominant catalyst. J Am Chem Soc 133(38):14872–14875

    Google Scholar 

  117. Yin Q, Tan JM, Besson C et al (2010) A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328(5976):342–345

    Google Scholar 

  118. Hong D, Jung J, Park J et al (2012) Water-soluble mononuclear cobalt complexes with organic ligands acting as precatalysts for efficient photocatalytic water oxidation. Energy Environ Sci 5(6):7606–7616

    Google Scholar 

  119. Fu S, Liu Y, Ding Y et al (2014) A mononuclear cobalt complex with an organic ligand acting as a precatalyst for efficient visible light-driven water oxidation. Chem Commun 50(17):2167–2169

    Google Scholar 

  120. Wasylenko DJ, Ganesamoorthy C, Borau-Garcia J et al (2011) Electrochemical evidence for catalytic water oxidation mediated by a high-valent cobalt complex. Chem Commun 47(14):4249–4251

    Google Scholar 

  121. Wasylenko DJ, Palmer RD, Schott E et al (2012) Interrogation of electrocatalytic water oxidation mediated by a cobalt complex. Chem Commun 48(15):2107–2109

    Google Scholar 

  122. Rigsby ML, Mandal S, Nam W et al (2012) Cobalt analogs of Ru-based water oxidation catalysts: overcoming thermodynamic instability and kinetic lability to achieve electrocatalytic O2 evolution. Chem Sci 3(10):3058–3062

    Google Scholar 

  123. McGuire R Jr, Dogutan DK, Teets TS et al (2010) Oxygen reduction reactivity of cobalt(II) hangman porphyrins. Chem Sci 1(3):411–414

    Google Scholar 

  124. Dogutan DK, Stoian SA, McGuire R et al (2010) Hangman corroles: efficient synthesis and oxygen reaction chemistry. J Am Chem Soc 133(1):131–140

    Google Scholar 

  125. Lai W, Cao R, Dong G et al (2012) Why is cobalt the best transition metal in transition-metal hangman corroles for O-O bond formation during water oxidation? J Phys Chem Lett 3(17):2315–2319

    Google Scholar 

  126. Lei H, Han A, Li F et al (2014) Electrochemical, spectroscopic and theoretical studies of a simple bifunctional cobalt corrole catalyst for oxygen evolution and hydrogen production. Phys Chem Chem Phys 16(5):1883–1893

    Google Scholar 

  127. McCool NS, Robinson DM, Sheats JE et al (2011) A Co4O4 “cubane” water oxidation catalyst inspired by photosynthesis. J Am Chem Soc 133(30):11446–11449

    Google Scholar 

  128. Beattie JK, Hambley TW, Klepetko JA et al (1998) The chemistry of cobalt acetate—IV. The isolation and crystal structure of the symmetric cubane, tetrakis[(μ-acetato)(μ 3-oxo) (pyridine)cobalt(III)] ⋅ chloroform solvate, [Co4(μ 3-O)4(μ-CH3CO2)4(C5H5N)in4] ⋅ 5CHCl3 and of the dicationic partial cubane, trimeric, [(μ-acetato)(acetato)tris(μ-hydroxy(μ 3-oxo) hexakispyridinetricobalt(III)]hexafluorophosphate ⋅ water solvate, [Co3(μ 3-O)(μ-OH)3(μ-CH3CO2(CH3CO2(C5H5N)6[PF6]2 ⋅ 2H2O. Polyhedron 17(8):1343–1354

    Google Scholar 

  129. Chakrabarty R, Bora SJ, Das BK (2007) Synthesis, structure, spectral and electrochemical properties, and catalytic use of cobalt(III)–oxo cubane clusters. Inorg Chem 46(22):9450–9462

    Google Scholar 

  130. Berardi S, La Ganga G, Natali M et al (2012) Photocatalytic water oxidation: tuning light-induced electron transfer by molecular Co4O4 cores. J Am Chem Soc 134(27):11104–11107

    Google Scholar 

  131. La Ganga G, Puntoriero F, Campagna S et al (2012) Light-driven water oxidation with a molecular tetra-cobalt(III) cubane cluster. Faraday Discuss 155:177–190

    Google Scholar 

  132. McAlpin JG, Stich TA, Ohlin CA et al (2011) Electronic structure description of a [Co(III)3Co(IV)O4] cluster: a model for the paramagnetic intermediate in cobalt-catalyzed water oxidation. J Am Chem Soc 133(39):15444–15452

    Google Scholar 

  133. Symes MD, Surendranath Y, Lutterman DA et al (2011) Bidirectional and unidirectional PCET in a molecular model of a cobalt-based oxygen-evolving catalyst. J Am Chem Soc 133(14):5174–5177

    Google Scholar 

  134. Symes MD, Lutterman DA, Teets TS et al (2013) Photo-active cobalt cubane model of an oxygen-evolving catalyst. ChemSusChem 6(1):65–69

    Google Scholar 

  135. Evangelisti F, Güttinger R, Moré R et al (2013) Closer to Photosystem II: a Co4O4 cubane catalyst with flexible ligand architecture. J Am Chem Soc 135(50):18734–18737

    Google Scholar 

  136. Zhang B, Li F, Yu F et al (2014) Electrochemical and photoelectrochemical water oxidation by supported cobalt–oxo cubanes. ACS Catal 4(3):804–809

    Google Scholar 

  137. Nakazono T, Parent AR, Sakai K (2013) Cobalt porphyrins as homogeneous catalysts for water oxidation. Chem Commun 49(56):6325–6327

    Google Scholar 

  138. Wang D, Groves JT (2013) Efficient water oxidation catalyzed by homogeneous cationic cobalt porphyrins with critical roles for the buffer base. Proc Natl Acad Sci U S A 110(39):15579–15584

    Google Scholar 

  139. Pizzolato E, Natali M, Posocco B et al (2013) Light driven water oxidation by a single site cobalt salophen catalyst. Chem Commun 49(85):9941–9943

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwok-Yin Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, L.Y.S., Wong, KY. (2015). Recent Development in Water Oxidation Catalysts Based on Manganese and Cobalt Complexes. In: Wong, WY. (eds) Organometallics and Related Molecules for Energy Conversion. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46054-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46054-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46053-5

  • Online ISBN: 978-3-662-46054-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics