Skip to main content

Kinetics and Mechanisms of Reduction of Protons and Carbon Dioxide Catalyzed by Metal Complexes and Nanoparticles

  • Chapter
Organometallics and Related Molecules for Energy Conversion

Abstract

Kinetics and mechanisms of reduction of protons and CO2 catalyzed by metal complexes and nanoparticles have been discussed in this chapter. Kinetic studies including deuterium kinetic isotope effects on heterogeneous catalysts for hydrogen evolution by proton reduction have been demonstrated to provide essential mechanistic information on bond cleavage and formation associated with electron transfer. The rate-determining steps in the catalytic cycles are clarified by kinetic studies, providing valuable information on observable intermediates. The most important intermediates in the catalytic reduction of protons and CO2 are metal-hydride complexes, which can reduce protons and CO2 to produce hydrogen and formic acid, respectively. The catalytic interconversion between hydrogen and a hydrogen storage compound has been made possible by changing pH, providing a convenient hydrogen-on-demand system in which hydrogen gas can be stored as a liquid (e.g., formic acid) or solid form (NADH) and hydrogen can be produced by the catalytic decomposition of the hydrogen storage compound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103:15729–15735

    Google Scholar 

  2. Gray HB (2009) Powering the planet with solar fuel. Nat Chem 1:7–7

    Google Scholar 

  3. Thomas JM (2014) Reflections on the topic of solar fuels. Energy Environ Sci 7:19–20

    Google Scholar 

  4. Faunce TA, Lubitz W, Rutherford AW, MacFarlane D, Moore GF, Yang P, Nocera DG, Moore TA, Gregory DH, Fukuzumi S, Yoon KB, Armstrong FA, Wasielewski MR, Styring S (2013) Energy and environment policy case for a global project on artificial photosynthesis. Energy Environ Sci 6:695–698

    Google Scholar 

  5. Züttel A, Borgschulte A, Schlapbach L (eds) (2011) Hydrogen as a future energy carrier. Wiley-VCH, Weinheim

    Google Scholar 

  6. Nocera DG (2012) The artificial leaf. Acc Chem Res 45:767–776

    MathSciNet  Google Scholar 

  7. Kärkäs MD, Johnston EV, Verho O, Åkermark B (2013) Artificial photosynthesis: from nanosecond electron transfer to catalytic water oxidation. Acc Chem Res 47:100–111

    Google Scholar 

  8. Wen F, Li C (2013) Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts. Acc Chem Res 46:2355–2364

    MathSciNet  Google Scholar 

  9. Bensaid S, Centi G, Garrone E, Perathoner S, Saracco G (2012) Towards artificial leaves for solar hydrogen and fuels from carbon dioxide. ChemSusChem 5:500–521

    Google Scholar 

  10. Fukuzumi S, Hong D, Yamada Y (2013) Bioinspired photocatalytic water reduction and oxidation with earth-abundant metal catalysts. J Phys Chem Lett 4:3458–3467

    Google Scholar 

  11. Fukuzumi S (2008) Bioinspired energy conversion systems for hydrogen production and storage. Eur J Inorg Chem 2008:1351–1362

    Google Scholar 

  12. Balzani V, Credi A, Venturi M (2008) Photochemical conversion of solar energy. ChemSusChem 1:26–58

    Google Scholar 

  13. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52:7372–7408

    Google Scholar 

  14. Liao F, Zeng Z, Eley C, Lu Q, Hong X, Tsang SCE (2012) Electronic modulation of a copper/zinc oxide catalyst by a heterojunction for selective hydrogenation of carbon dioxide to methanol. Angew Chem Int Ed 51:5832–5836

    Google Scholar 

  15. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev 38:89–99

    Google Scholar 

  16. Liu Q, Wu D, Zhou Y, Su H, Wang R, Zhang C, Yan S, Xiao M, Zou Z (2014) Single-crystalline, ultrathin ZnGa2O4 nanosheet scaffolds to promote photocatalytic activity in CO2 reduction into methane. ACS Appl Mater Interfaces 6:2356–2361

    Google Scholar 

  17. Wasielewski MR (2009) Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc Chem Res 42:1910–1921

    Google Scholar 

  18. Gust D, Moore TA, Moore AL (2009) Solar fuels via artificial photosynthesis. Acc Chem Res 42:1890–1898

    Google Scholar 

  19. Guldi DM, Sgobba V (2011) Carbon nanostructures for solar energy conversion schemes. Chem Commun 47:606–610

    Google Scholar 

  20. Fukuzumi S (2008) Development of bioinspired artificial photosynthetic systems. PCCP 10:2283–2297

    Google Scholar 

  21. D’Souza F, Ito O (2012) Photosensitized electron transfer processes of nanocarbons applicable to solar cells. Chem Soc Rev 41:86–96

    Google Scholar 

  22. Fukuzumi S, Ohkubo K (2012) Assemblies of artificial photosynthetic reaction centres. J Mater Chem 22:4575–4587

    Google Scholar 

  23. Fukuzumi S, Ohkubo K, Suenobu T (2014) Long-lived charge separation and applications in artificial photosynthesis. Acc Chem Res 47:1455–1464

    Google Scholar 

  24. Fukuzumi S, Yamada Y, Suenobu T, Ohkubo K, Kotani H (2011) Catalytic mechanisms of hydrogen evolution with homogeneous and heterogeneous catalysts. Energy Environ Sci 4:2754–2766

    Google Scholar 

  25. Fukuzumi S, Yamada Y (2012) Catalytic activity of metal-based nanoparticles for photocatalytic water oxidation and reduction. J Mater Chem 22:24284–24296

    Google Scholar 

  26. Dempsey JL, Brunschwig BS, Winkler JR, Gray HB (2009) Hydrogen evolution catalyzed by cobaloximes. Acc Chem Res 42:1995–2004

    Google Scholar 

  27. Eckenhoff WT, Eisenberg R (2012) Molecular systems for light driven hydrogen production. Dalton Trans 41:13004–13021

    Google Scholar 

  28. Halpin Y, Pryce MT, Rau S, Dini D, Vos JG (2013) Recent progress in the development of bimetallic photocatalysts for hydrogen generation. Dalton Trans 42:16243–16254

    Google Scholar 

  29. Schneider J, Jia H, Muckerman JT, Fujita E (2012) Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. Chem Soc Rev 41:2036–2051

    Google Scholar 

  30. Schulz M, Karnahl M, Schwalbe M, Vos JG (2012) The role of the bridging ligand in photocatalytic supramolecular assemblies for the reduction of protons and carbon dioxide. Coord Chem Rev 256:1682–1705

    Google Scholar 

  31. Fukuzumi S, Suenobu T (2013) Hydrogen storage and evolution catalysed by metal hydride complexes. Dalton Trans 42:18–28

    Google Scholar 

  32. Jessop PG, Joó F, Tai C-C (2004) Recent advances in the homogeneous hydrogenation of carbon dioxide. Coord Chem Rev 248:2425–2442

    Google Scholar 

  33. Kobayashi K, Tanaka K (2014) Approach to multi-electron reduction beyond two-electron reduction of CO2. Phys Chem Chem Phys 16:2240–2250

    Google Scholar 

  34. Concepcion JJ, Jurss JW, Brennaman MK, Hoertz PG, Patrocinio AOT, Murakami Iha NY, Templeton JL, Meyer TJ (2009) Making oxygen with ruthenium complexes. Acc Chem Res 42:1954–1965

    Google Scholar 

  35. Sala X, Maji S, Bofill R, García-Antón J, Escriche L, Llobet A (2013) Molecular water oxidation mechanisms followed by transition metals: state of the art. Acc Chem Res 47:504–516

    Google Scholar 

  36. Meyer TJ, Huynh MHV (2003) The remarkable reactivity of high oxidation state ruthenium and osmium polypyridyl complexes. Inorg Chem 42:8140–8160

    Google Scholar 

  37. Lv H, Geletii YV, Zhao C, Vickers JW, Zhu G, Luo Z, Song J, Lian T, Musaev DG, Hill CL (2012) Polyoxometalate water oxidation catalysts and the production of green fuel. Chem Soc Rev 41:7572–7589

    Google Scholar 

  38. Liu X, Wang F (2012) Transition metal complexes that catalyze oxygen formation from water: 1979–2010. Coord Chem Rev 256:1115–1136

    Google Scholar 

  39. Cao R, Lai W, Du P (2012) Catalytic water oxidation at single metal sites. Energy Environ Sci 5:8134–8157

    Google Scholar 

  40. Singh A, Spiccia L (2013) Water oxidation catalysts based on abundant 1st row transition metals. Coord Chem Rev 257:2607–2622

    Google Scholar 

  41. Cady CW, Crabtree RH, Brudvig GW (2008) Functional models for the oxygen-evolving complex of photosystem II. Coord Chem Rev 252:444–455

    Google Scholar 

  42. Duan L, Tong L, Xu Y, Sun L (2011) Visible light-driven water oxidation-from molecular catalysts to photoelectrochemical cells. Energy Environ Sci 4:3296–3313

    Google Scholar 

  43. Le Goff A, Artero V, Jousselme B, Tran PD, Guillet N, Métayé R, Fihri A, Palacin S, Fontecave M (2009) From hydrogenases to noble metal–free catalytic nanomaterials for H2 production and uptake. Science 326:1384–1387

    Google Scholar 

  44. Thoi VS, Sun Y, Long JR, Chang CJ (2013) Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions. Chem Soc Rev 42:2388–2400

    Google Scholar 

  45. Wang M, Chen L, Sun L (2012) Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts. Energy Environ Sci 5:6763–6778

    Google Scholar 

  46. Losse S, Vos JG, Rau S (2010) Catalytic hydrogen production at cobalt centres. Coord Chem Rev 254:2492–2504

    Google Scholar 

  47. Esswein AJ, Nocera DG (2007) Hydrogen production by molecular photocatalysis. Chem Rev 107:4022–4047

    Google Scholar 

  48. Wang M, Na Y, Gorlov M, Sun L (2009) Light-driven hydrogen production catalysed by transition metal complexes in homogeneous systems. Dalton Trans 2009:6458–6467

    Google Scholar 

  49. Mandal S, Shikano S, Yamada Y, Lee Y-M, Nam W, Llobet A, Fukuzumi S (2013) Protonation equilibrium and hydrogen production by a dinuclear cobalt–hydride complex reduced by cobaltocene with trifluoroacetic acid. J Am Chem Soc 135:15294–15297

    Google Scholar 

  50. Varma S, Castillo CE, Stoll T, Fortage J, Blackman AG, Molton F, Deronzier A, Collomb M-N (2013) Efficient photocatalytic hydrogen production in water using a cobalt(III) tetraaza-macrocyclic catalyst: electrochemical generation of the low-valent Co(I) species and its reactivity toward proton reduction. Phys Chem Chem Phys 15:17544–17552

    Google Scholar 

  51. Guttentag M, Rodenberg A, Kopelent R, Probst B, Buchwalder C, Brandstätter M, Hamm P, Alberto R (2012) Photocatalytic H2 production with a rhenium/cobalt system in water under acidic conditions. Eur J Inorg Chem 2012:59–64

    Google Scholar 

  52. Krishnan CV, Brunschwig BS, Creutz C, Sutin N (1985) Homogeneous catalysis of the photoreduction of water. 6. Mediation by polypyridine complexes of ruthenium(II) and cobalt(II) in alkaline media. J Am Chem Soc 107:2005–2015

    Google Scholar 

  53. Krishnan CV, Sutin N (1981) Homogeneous catalysis of the photoreduction of water by visible light. 2. Mediation by a tris(2,2′-bipyridine)ruthenium(II)-cobalt(II) bipyridine system. J Am Chem Soc 103:2141–2142

    Google Scholar 

  54. Fukuzumi S, Kobayashi T, Suenobu T (2008) Efficient catalytic decomposition of formic acid for the selective generation of H2 and H/D exchange with a water-soluble rhodium complex in aqueous solution. ChemSusChem 1:827–834

    Google Scholar 

  55. Abura T, Ogo S, Watanabe Y, Fukuzumi S (2003) Isolation and crystal structure of a water-soluble iridium hydride: a robust and highly active catalyst for acid-catalyzed transfer hydrogenations of carbonyl compounds in acidic media. J Am Chem Soc 125:4149–4154

    Google Scholar 

  56. Suenobu T, Guldi DM, Ogo S, Fukuzumi S (2003) Excited-state deprotonation and H/D exchange of an iridium hydride complex. Angew Chem Int Ed 42:5492–5495

    Google Scholar 

  57. Fukuzumi S, Kobayashi T, Suenobu T (2011) Photocatalytic production of hydrogen by disproportionation of one-electron-reduced rhodium and iridium–ruthenium complexes in water. Angew Chem Int Ed 50:728–731

    Google Scholar 

  58. Stoll T, Gennari M, Serrano I, Fortage J, Chauvin J, Odobel F, Rebarz M, Poizat O, Sliwa M, Deronzier A, Collomb M-N (2013) [RhIII(dmbpy)2Cl2]+ as a highly efficient catalyst for visible-light-driven hydrogen production in pure water: comparison with other rhodium catalysts. Chem Eur J 19:782–792

    Google Scholar 

  59. Amouyal E, Koffi P (1985) Photochemical production of hydrogen from water. J Photochem 29:227–242

    Google Scholar 

  60. Weddle KS, Aiken JD, Finke RG (1998) Rh(0) nanoclusters in benzene hydrogenation catalysis: kinetic and mechanistic evidence that a putative [(C8H17)3NCH3]+[RhCl4]−ion-pair catalyst is actually a distribution of Cl− and [(C8H17)3NCH3]+ stabilized Rh(0) nanoclusters. J Am Chem Soc 120:5653–5666

    Google Scholar 

  61. Fukuzumi S, Kobayashi T, Suenobu T (2010) Unusually large tunneling effect on highly efficient generation of hydrogen and hydrogen isotopes in pH-selective decomposition of formic acid catalyzed by a heterodinuclear iridium-ruthenium complex in water. J Am Chem Soc 132:1496–1497

    Google Scholar 

  62. Kwart H (1982) Temperature dependence of the primary kinetic hydrogen isotope effect as a mechanistic criterion. Acc Chem Res 15:401–408

    Google Scholar 

  63. Bercaw JE, Chen GS, Labinger JA, Lin B-L (2008) Hydrogen tunneling in protonolysis of platinum(II) and palladium(II) methyl complexes: mechanistic implications. J Am Chem Soc 130:17654–17655

    Google Scholar 

  64. Pan Z, Horner JH, Newcomb M (2008) Tunneling in C − H oxidation reactions by an oxoiron(IV) porphyrin radical cation: direct measurements of very large H/D kinetic isotope effects. J Am Chem Soc 130:7776–7777

    Google Scholar 

  65. Kohen A, Klinman JP (1998) Enzyme catalysis: beyond classical paradigms. Acc Chem Res 31:397–404

    Google Scholar 

  66. Maenaka Y, Suenobu T, Fukuzumi S (2012) Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure. Energy Environ Sci 5:7360–7367

    Google Scholar 

  67. Ruelle P, Kesselring UW, Ho N-T (1986) Ab initio quantum-chemical study of the unimolecular pyrolysis mechanisms of formic acid. J Am Chem Soc 108:371–375

    Google Scholar 

  68. Dau H, Haumann M (2008) The manganese complex of photosystem II in its reaction cycle-basic framework and possible realization at the atomic level. Coord Chem Rev 252:273–295

    Google Scholar 

  69. Maenaka Y, Suenobu T, Fukuzumi S (2011) Efficient catalytic interconversion between NADH and NAD+ accompanied by generation and consumption of hydrogen with a water-soluble iridium complex at ambient pressure and temperature. J Am Chem Soc 134:367–374

    Google Scholar 

  70. Kotani H, Ono T, Ohkubo K, Fukuzumi S (2007) Efficient photocatalytic hydrogen evolution without an electron mediator using a simple electron donor-acceptor dyad. Phys Chem Chem Phys 9:1487–1492

    Google Scholar 

  71. Hasobe T, Sakai H, Mase K, Ohkubo K, Fukuzumi S (2013) Remarkable enhancement of photocatalytic hydrogen evolution efficiency utilizing an internal cavity of supramolecular porphyrin hexagonal nanocylinders under visible-light irradiation. J Phys Chem C 117:4441–4449

    Google Scholar 

  72. Yamada Y, Miyahigashi T, Kotani H, Ohkubo K, Fukuzumi S (2012) Photocatalytic hydrogen evolution with Ni nanoparticles by using 2-phenyl-4-(1-naphthyl)quinolinium ion as a photocatalyst. Energy Environ Sci 5:6111–6118

    Google Scholar 

  73. Amao Y (2011) Solar fuel production based on the artificial photosynthesis system. ChemCatChem 3:458–474

    Google Scholar 

  74. Maenaka Y, Suenobu T, Fukuzumi S (2012) Hydrogen evolution from aliphatic alcohols and 1,4-selective hydrogenation of NAD+ catalyzed by a C, N and a C, C cyclometalated organoiridium complex at room temperature in water. J Am Chem Soc 134:9417–9427

    Google Scholar 

  75. Nielsen M, Alberico E, Baumann W, Drexler H-J, Junge H, Gladiali S, Beller M (2013) Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature 495:85–89

    Google Scholar 

  76. Monney A, Barsch E, Sponholz P, Junge H, Ludwig R, Beller M (2014) Base-free hydrogen generation from methanol using a bi-catalytic system. Chem Commun 50:707–709

    Google Scholar 

  77. Chen Z, Glasson CRK, Holland PL, Meyer TJ (2013) Electrogenerated polypyridyl ruthenium hydride and ligand activation for water reduction to hydrogen and acetone to iso-propanol. Phys Chem Chem Phys 15:9503–9507

    Google Scholar 

  78. Bullock RM, Appel AM, Helm ML (2014) Production of hydrogen by electrocatalysis: making the H-H bond by combining protons and hydrides. Chem Commun 50:3125–3143

    Google Scholar 

  79. Chen S, Ho M-H, Bullock RM, DuBois DL, Dupuis M, Rousseau R, Raugei S (2014) Computing free energy landscapes: application to Ni-based electrocatalysts with pendant amines for H2 production and oxidation. ACS Catal 4:229–242

    Google Scholar 

  80. Raugei S, Chen S, Ho M-H, Ginovska-Pangovska B, Rousseau RJ, Dupuis M, DuBois DL, Bullock RM (2012) The role of pendant amines in the breaking and forming of molecular hydrogen catalyzed by nickel complexes. Chem Eur J 18:6493–6506

    Google Scholar 

  81. Rose MJ, Gray HB, Winkler JR (2012) Hydrogen generation catalyzed by fluorinated diglyoxime-iron complexes at low overpotentials. J Am Chem Soc 134:8310–8313

    Google Scholar 

  82. Helm ML, Stewart MP, Bullock RM, DuBois MR, DuBois DL (2011) A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333:863–866

    Google Scholar 

  83. DuBois DL (2014) Development of molecular electrocatalysts for energy storage. Inorg Chem 53:3935–3960

    Google Scholar 

  84. Fukuzumi S, Kotani H, Ohkubo K, Ogo S, Tkachenko NV, Lemmetyinen H (2004) Electron-transfer state of 9-mesityl-10-methylacridinium ion with a much longer lifetime and higher energy than that of the natural photosynthetic reaction center. J Am Chem Soc 126:1600–1601

    Google Scholar 

  85. Kotani H, Hanazaki R, Ohkubo K, Yamada Y, Fukuzumi S (2011) Size- and shape-dependent activity of metal nanoparticles as hydrogen-evolution catalysts: mechanistic insights into photocatalytic hydrogen evolution. Chem Eur J 17:2777–2785

    Google Scholar 

  86. Ohkubo K, Kotani H, Fukuzumi S (2005) Misleading effects of impurities derived from the extremely long-lived electron-transfer state of 9-mesityl-10-methylacridinium ion. Chem Commun 2005:4520–4522

    Google Scholar 

  87. Fukuzumi S, Kotani H, Ohkubo K (2008) Response: why had long-lived electron-transfer states of donor-substituted 10-methylacridinium ions been overlooked? Formation of the dimer radical cations detected in the near-IR region. Phys Chem Chem Phys 10:5159–5162

    Google Scholar 

  88. Hoshino M, Uekusa H, Tomita A, Koshihara S, Sato T, Nozawa S, Adachi S, Ohkubo K, Kotani H, Fukuzumi S (2012) Determination of the structural features of a long-livedelectron-transfer state of 9-mesityl-10-methylacridinium ion. J Am Chem Soc 134:4569–4572

    Google Scholar 

  89. Kotani H, Ohkubo K, Fukuzumi S (2012) Formation of a long-lived electron-transfer state of a naphthalene-quinolinium ion dyad and the π-dimer radical cation. Faraday Discuss 155:89–102

    Google Scholar 

  90. Yamada Y, Miyahigashi T, Kotani H, Ohkubo K, Fukuzumi S (2011) Photocatalytic hydrogen evolution under highly basic conditions by using Ru nanoparticles and 2-phenyl-4-(1-naphthyl)quinolinium ion. J Am Chem Soc 133:16136–16145

    Google Scholar 

  91. Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114:1709–1742

    Google Scholar 

  92. Saeidi S, Amin NAS, Rahimpour MR (2014) Hydrogenation of CO2 to value-addedproducts—a review and potential future developments. J CO2 Util 5:66–81

    Google Scholar 

  93. Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727

    Google Scholar 

  94. Kondratenko EV, Mul G, Baltrusaitis J, Larrazabal GO, Perez-Ramirez J (2013) Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ Sci 6:3112–3135

    Google Scholar 

  95. Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6:1711–1731

    Google Scholar 

  96. Olah GA, Goeppert A, Prakash GKS (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74:487–498

    Google Scholar 

  97. Jessop PG, Ikariya T, Noyori R (1994) Homogeneous catalytic-hydrogenation of supercritical carbon-dioxide. Nature 368:231–233

    Google Scholar 

  98. Jessop PG, Ikariya T, Noyori R (1995) Homogeneous hydrogenation of carbon-dioxide. Chem Rev 95:259–272

    Google Scholar 

  99. Tanaka K, Ooyama D (2002) Multi-electron reduction of CO2 via Ru-CO2, -C(O)OH, -CO, -CHO, and -CH2OH species. Coord Chem Rev 226:211–218

    Google Scholar 

  100. Wesselbaum S, Hintermair U, Leitner W (2012) Continuous-flow hydrogenation of carbon dioxide to pure formic acid using an integrated scCO2 process with immobilized catalyst and base. Angew Chem Int Ed 51:8585–8588

    Google Scholar 

  101. Ziebart C, Federsel C, Anbarasan P, Jackstell R, Baumann W, Spannenberg A, Beller M (2012) Well-defined iron catalyst for improved hydrogenation of carbon dioxide and bicarbonate. J Am Chem Soc 134:20701–20704

    Google Scholar 

  102. Jeletic MS, Mock MT, Appel AM, Linehan JC (2013) A cobalt-based catalyst for the hydrogenation of CO2 under ambient conditions. J Am Chem Soc 135:11533–11536

    Google Scholar 

  103. Huff CA, Sanford MS (2013) Catalytic CO2 hydrogenation to formate by a ruthenium pincer complex. ACS Catal 3:2412–2416

    Google Scholar 

  104. Li Y-N, He L-N, Liu A-H, Lang X-D, Yang Z-Z, Yu B, Luan C-R (2013) In situ hydrogenation of captured CO2 to formate with polyethyleneimine and Rh/monophosphine system. Green Chem 15:2825–2829

    Google Scholar 

  105. Drake JL, Manna CM, Byers JA (2013) Enhanced carbon dioxide hydrogenation facilitated by catalytic quantities of bicarbonate and other inorganic salts. Organometallics 32:6891–6894

    Google Scholar 

  106. Badiei YM, Wang W-H, Hull JF, Szalda DJ, Muckerman JT, Himeda Y, Fujita E (2013) Cp*Co(III) catalysts with proton-responsive ligands for carbon dioxide hydrogenation in aqueous media. Inorg Chem 52:12576–12586

    Google Scholar 

  107. Ogo S, Kabe R, Hayashi H, Harada R, Fukuzumi S (2006) Mechanistic investigation of CO2 hydrogenation by Ru(II) and Ir(III) aqua complexes under acidic conditions: two catalytic systems differing in the nature of the rate determining step. Dalton Trans 4657–4663

    Google Scholar 

  108. Hayashi H, Ogo S, Fukuzumi S (2004) Aqueous hydrogenation of carbon dioxide catalysed by water-soluble ruthenium aqua complexes under acidic conditions. Chem Commun 2004:2714–2715

    Google Scholar 

  109. Hayashi H, Ogo S, Abura T, Fukuzumi S (2003) Accelerating effect of a proton on the reduction of CO2 dissolved in water under acidic conditions. Isolation, crystal structure, and reducing ability of a water-soluble ruthenium hydride complex. J Am Chem Soc 125:14266–14267

    Google Scholar 

  110. Hull JF, Himeda Y, Wang W-H, Hashiguchi B, Periana R, Szalda DJ, Muckerman JT, Fujita E (2012) Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nat Chem 4:383–388

    Google Scholar 

  111. Manaka Y, Wang W-H, Suna Y, Kambayashi H, Muckerman JT, Fujita E, Himeda Y (2014) Efficient H2 generation from formic acid using azole complexes in water. Catal Sci Technol 4:34–37

    Google Scholar 

  112. Fujita E, Muckerman JT, Himeda Y (2013) Interconversion of CO2 and formic acid by bio-inspired Ir complexes with pendent bases. Biochim Biophys Acta Bioenerg 1827:1031–1038

    Google Scholar 

  113. Ge J, Chen X, Liu C, Lu T, Liao J, Liang L, Xing W (2010) Promoting effect of vanadium ions on the anodic Pd/C catalyst for direct formic acid fuel cell application. Electrochim Acta 55:9132–9136

    Google Scholar 

  114. Wang R, Liu J, Liu P, Bi X, Yan X, Wang W, Ge X, Chen M, Ding Y (2014) Dispersing Pt atoms onto nanoporous gold for high performance direct formic acid fuel cells. Chem Sci 5:403–409

    Google Scholar 

  115. Cai W, Liang L, Zhang Y, Xing W, Liu C (2013) Real contribution of formic acid in direct formic acid fuel cell: investigation of origin and guiding for micro structure design. Int J Hydrog Energy 38:212–218

    Google Scholar 

  116. Ji X, Lee KT, Holden R, Zhang L, Zhang J, Botton GA, Couillard M, Nazar LF (2010) Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat Chem 2:286–293

    Google Scholar 

  117. Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42:1983–1994

    Google Scholar 

  118. Takeda H, Ishitani O (2010) Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies. Coord Chem Rev 254:346–354

    Google Scholar 

  119. Chen Z, Concepcion JJ, Brennaman MK, Kang P, Norris MR, Hoertz PG, Meyer TJ (2012) Splitting CO2 into CO and O2 by a single catalyst. Proc Natl Acad Sci U S A 109:15606–15611

    Google Scholar 

  120. Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord Chem Rev 257:171–186

    Google Scholar 

  121. Yan S, Wang J, Zou Z (2013) An anion-controlled crystal growth route to Zn2GeO4 nanorods for efficient photocatalytic conversion of CO2 into CH4. Dalton Trans 42:12975–12979

    Google Scholar 

  122. Roy SC, Varghese OK, Paulose M, Grimes CA (2010) Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4:1259–1278

    Google Scholar 

  123. Hamdy MS, Amrollahi R, Sinev I, Mei B, Mul G (2014) Strategies to design efficient silica-supported photocatalysts for reduction of CO2. J Am Chem Soc 136:594–597

    Google Scholar 

  124. Yu J, Jin J, Cheng B, Jaroniec M (2014) A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J Mater Chem A 2:3407–3416

    Google Scholar 

  125. Andrews E, Ren M, Wang F, Zhang Z, Sprunger P, Kurtz R, Flake J (2013) Electrochemical reduction of CO2 at Cu nanocluster/(10Î0) ZnO electrodes. J Electrochem Soc 160:H841–H846

    Google Scholar 

  126. Le M, Ren M, Zhang Z, Sprunger PT, Kurtz RL, Flake JC (2011) Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J Electrochem Soc 158:E45–E49

    Google Scholar 

  127. Schouten KJP, Kwon Y, van der Ham CJM, Qin Z, Koper MTM (2011) A new mechanism for the selectivity to C-1 and C-2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem Sci 2:1902–1909

    Google Scholar 

  128. Costentin C, Robert M, Savéant J-M (2013) Catalysis of the electrochemical reduction of carbon dioxide. Chem Soc Rev 42:2423–2436

    Google Scholar 

  129. Qiao J, Liu Y, Hong F, Zhang J (2014) A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev 43:631–675

    Google Scholar 

  130. Peterson AA, Nørskov JK (2012) Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J Phys Chem Lett 3:251–258

    Google Scholar 

  131. Yan Y, Zeitler EL, Gu J, Hu Y, Bocarsly AB (2013) Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. J Am Chem Soc 135:14020–14023

    Google Scholar 

  132. Cole EB, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132:11539–11551

    Google Scholar 

  133. Huff CA, Sanford MS (2011) Cascade catalysis for the homogeneous hydrogenation of CO2 to methanol. J Am Chem Soc 133:18122–18125

    Google Scholar 

  134. Wesselbaum S, vom Stein T, Klankermayer J, Leitner W (2012) Hydrogenation of carbon dioxide to methanol by using a homogeneous ruthenium-phosphine catalyst. Angew Chem Int Ed 51:7499–7502

    Google Scholar 

  135. Li Y, Junge K, Beller M (2013) Improving the efficiency of the hydrogenation of carbonates and carbon dioxide to methanol. ChemCatChem 5:1072–1074

    Google Scholar 

  136. Miller AJM, Heinekey DM, Mayer JM, Goldberg KI (2013) Catalytic disproportionation of formic acid to generate methanol. Angew Chem Int Ed 52:3981–3984

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the contributions of their collaborators and coworkers cited in the references and support by an ALCA (Advanced Low Carbon Technology Research and Development) program from the Japan Science and Technology Agency and funds from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunichi Fukuzumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fukuzumi, S., Suenobu, T., Yamada, Y. (2015). Kinetics and Mechanisms of Reduction of Protons and Carbon Dioxide Catalyzed by Metal Complexes and Nanoparticles. In: Wong, WY. (eds) Organometallics and Related Molecules for Energy Conversion. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46054-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46054-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46053-5

  • Online ISBN: 978-3-662-46054-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics