Skip to main content

Organometallic Versus Organic Molecules for Energy Conversion in Organic Light-Emitting Diodes and Solar Cells

  • Chapter
Organometallics and Related Molecules for Energy Conversion

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 1436 Accesses

Abstract

With the rapid growth of population and urbanization, the energy demand is increasing annually. Due to the major problems concerning the rapid depleting nature of the extraction of fossil resources, energy conservation and transition to renewable energy supplies have been a hot topic worldwide. Organic light-emitting diodes and solar cells represent two important techniques to allow the efficient utilization of energy resources in energy-saving devices and exploration of using renewable energy in energy-producing devices. In this chapter, the importance of using organometallic and organic molecules in both areas of research is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murawsk C, Leo K, Gather MC (2013) Efficiency roll-off in organic light-emitting diodes. Adv Mater 25:6801–6827

    Google Scholar 

  2. Ameri T, Li N, Brabec CJ (2013) Highly efficient organic tandem solar cells: a follow up review. Energy Environ Sci 6:2390–2413

    Google Scholar 

  3. Tang CW, Vanslyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913–915

    Google Scholar 

  4. Kalinowski J, Fattori V, Cocchi M, Williams JAG (2011) Light-emitting devices based on organometallic platinum complexes as emitters. Coord Chem Rev 255:2401–2525

    Google Scholar 

  5. Ho CL, Wong WY (2013) Charge and energy transfers in functional metallophosphors and metallopolyynes. Coord Chem Rev 257:1614–1649

    Google Scholar 

  6. Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154

    Google Scholar 

  7. Gong X, Ostrowski TC, Bazan GC (2003) Electrophosphorescence from a conjugated copolymer doped with an iridium complex: high brightness and improved operational stability. Adv Mater 15:45–49

    Google Scholar 

  8. Chen Z, Bian Z, Huang C (2010) Functional IrIII complexes and their applications. Adv Mater 22:1534–1539

    Google Scholar 

  9. Lee CW, Lee JY (2013) Above 30 % external quantum efficiency in blue phosphorescent organic light-emitting diodes using pyrido[2,3-b]indole derivatives as host materials. Adv Mater 25:5450–5454

    Google Scholar 

  10. King KA, Spellane PJ, Watts RJ (1985) Excited-state properties of a triply ortho-metalated iridium(III) complex. J Am Chem Soc 107:1431–1432

    Google Scholar 

  11. Adachi C, Baldo MA, Forrest SR, Thompson ME (2000) High-efficiency red electrophosphorescence devices. Appl Phys Lett 78:170–175

    Google Scholar 

  12. Tanaka D, Sasabe H, Li YJ, Su SJ, Takeda T, Kido J (2007) Ultra high efficiency green organic light-emitting devices. Jpn J Appl Phys 46:L10–L12

    Google Scholar 

  13. Zhu MR, Ye TL, He X, Cao XS, Zhong C, Ma DG, Qin JG, Yang CL (2011) Highly efficient solution-processed green and red electrophosphorescent devices enabled by small-molecule bipolar host material. J Mater Chem 21:9326–9331

    Google Scholar 

  14. Chou HH, Cheng CH (2010) A highly efficient universal bipolar host for blue, green, and red phosphorescent OLEDs. Adv Mater 22:2468–2471

    Google Scholar 

  15. Tao YT, Wang QA, Yang CL, Zhong C, Qin JG, Ma DG (2010) Multifunctional triphenylamine/oxadiazole hybrid as host and exciton-blocking material: high efficiency green phosphorescent OLEDs using easily available and common materials. Adv Funct Mater 20:2923–2928

    Google Scholar 

  16. Li HY, Zhou L, Teng MY, Xu QL, Lin C, Zheng YX, Zuo JL, Zhang HJ, You XZ (2013) Highly efficient green phosphorescent OLEDs based on a novel iridium complex. J Mater Chem C 1:560–565

    Google Scholar 

  17. Tsuboyama A, Iwawaki H, Furugori M, Mukaide T, Kamatani J, Igawa S, Moriyama T, Miura S, Takiguchi T, Okada S, Hoshino M, Ueno K (2003) Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode. J Am Chem Soc 125:12971–12979

    Google Scholar 

  18. Su SJ, Cai C, Kido J (2012) Three-carbazole-armed host materials with various cores for RGB phosphorescent organic light-emitting diodes. J Mater Chem 22:3447–3456

    Google Scholar 

  19. Tao Y, Wang Q, Ao L, Zhong C, Qin J, Yang C, Ma D (2010) Molecular design of host materials based on triphenylamine/oxadiazole hybrids for excellent deep-red phosphorescent organic light-emitting diodes. J Mater Chem 20:1759–1765

    Google Scholar 

  20. Grushin VV, Herron N, LeCloux DD, Marshall WJ, Petrov VA, Wang Y (2001) New, efficient electroluminescent materials based on organometallic Ir complexes. Chem Commun 1494–1496

    Google Scholar 

  21. Tamayo AB, Alleyne BD, Djurovich PI, Lamansky S, Tsyba I, Ho NN, Bau R, Thompson ME (2003) Synthesis and characterization of facial and meridional tris-cyclometalated iridium(III) complexes. J Am Chem Soc 125:7377–7387

    Google Scholar 

  22. Wang RJ, Liu D, Ren HC, Zhang T, Yin HM, Liu GY, Li JY (2011) Highly efficient orange and white organic light-emitting diodes based on new orange iridium complexes. Adv Mater 23:2823–2827

    Google Scholar 

  23. Kido J, Hongawa K, Okuyama K, Nagai K (1994) White light‐emitting organic electroluminescent devices using the poly(N‐vinylcarbazole) emitter layer doped with three fluorescent dyes. Appl Phys Lett 64:815–817

    Google Scholar 

  24. Kido J, Kimura M, Nagai K (1995) Multilayer white light-emitting organic electroluminescent device. Science 267:1332–1334

    Google Scholar 

  25. Kido J, Shionoya H, Nagai K (1995) Single‐layer white light‐emitting organic electroluminescent devices based on dye‐dispersed poly(N‐vinylcarbazole). Appl Phys Lett 67:2281–2283

    Google Scholar 

  26. Tong QX, Lai SL, Chan MY, Tang JX, Kwong HL, Lee CS, Lee ST (2007) High-efficiency nondoped white organic light-emitting devices. Appl Phys Lett 91:023503-1–023503-3

    Google Scholar 

  27. Tsai YC, Jou JH (2006) Long-lifetime, high-efficiency white organic light-emitting diodes with mixed host composing double emission layers. Appl Phys Lett 89:243521-1243521-3

    Google Scholar 

  28. Yang Y, Peng T, Ye KQ, Wu Y, Liu Y, Wang Y (2011) High-efficiency and high-quality white organic light-emitting diode employing fluorescent emitters. Org Electron 12:29–33

    Google Scholar 

  29. Wang Q, Ma DG (2010) Management of charges and excitons for high-performance white organic light-emitting diodes. Chem Soc Rev 39:2387–2398

    Google Scholar 

  30. Su SJ, Gonmori E, Sasabe H, Kido J (2008) Highly efficient organic blue-and white-light-emitting devices having a carrier- and exciton-confining structure for reduced efficiency roll-off. Adv Mater 20:4189–4194

    Google Scholar 

  31. Seidler N, Reineke S, Walzer K, Lüssem B, Tomkeviciene A, Grazulevicius JV, Leo K (2010) Influence of the hole blocking layer on blue phosphorescent organic light-emitting devices using 3,6-di(9-carbazolyl)-9-(2-ethylhexyl)carbazole as host material. Appl Phys Lett 96:093304-1–093304-3

    Google Scholar 

  32. So F, Kondakov D (2010) Degradation mechanisms in small-molecule and polymer organic light-emitting diodes. Adv Mater 22:3762–3777

    Google Scholar 

  33. Liu XK, Zheng CJ, Lo MF, Xiao J, Chen Z, Liu CL, Lee CS, Fung MK, Zhang XH (2013) Novel blue fluorophor with high triplet energy level for high performance single-emitting-layer fluorescence and phosphorescence hybrid white organic light-emitting diodes. Chem Mater 25:4454–4459

    Google Scholar 

  34. D’Andrade BW, Holmes RJ, Forrest SR (2004) Efficient organic electrophosphorescent white-light-emitting device with a triple doped emissive layer. Adv Mater 16:624–628

    Google Scholar 

  35. Lee J, Lee JW, Cho NS, Hwang J, Joo CW, Sung WJ, Chu HY, Lee JI (2014) Highly efficient all phosphorescent white organic light-emitting diodes for solid state lighting applications. Curr Appl Phys 14:S84–S87

    Google Scholar 

  36. Sasabe H, Takamatsu J, Motoyama T, Watanabe S, Wagenblast G, Langer N, Molt O, Fuchs E, Lennartz C, Kido K (2010) High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex. Adv Mater 22:5003–5007

    Google Scholar 

  37. Chang CH, Tien KC, Chen CC, Lin MS, Cheng HC, Liu SH, Wu CC, Hung JY, Chiu YC, Chi Y (2010) Efficient phosphorescent white OLEDs with high color rendering capability. Org Electron 11:412–418

    Google Scholar 

  38. Li J, Wang R, Yang R, Zhou W, Wang X (2013) Iridium complexes containing 2-aryl-benzothiazole ligands: color tuning and application in high-performance organic light-emitting diodes. J Mater Chem C 1:4171–4179

    Google Scholar 

  39. Chang CH, Chen CC, Wu CC, Chang SY, Hung JY, Chi Y (2010) High-color-rendering pure-white phosphorescent organic light-emitting devices employing only two complementary colors. Org Electron 11:266–272

    Google Scholar 

  40. Wang Q, Ding JQ, Ma DG, Cheng YX, Wang LX, Jing XB, Wang FS (2009) Harvesting excitons via two parallel channels for efficient white organic LEDs with nearly 100 % internal quantum efficiency: fabrication and emission-mechanism analysis. Adv Funct Mater 19:84–95

    Google Scholar 

  41. Lai SL, Tao SL, Chan MY, Ng TW, Lo MF, Lee CS, Zhang XH, Lee ST (2010) Efficient white organic light-emitting devices based on phosphorescent iridium complexes. Org Electron 11:1511–1513

    Google Scholar 

  42. Turner E, Nakken N, Li J (2013) Cyclometalated platinum complexes with luminescent quantum yields approaching 100 %. Inorg Chem 52:7344–7351

    Google Scholar 

  43. Kui SCF, Chow PK, Cheng G, Kwok CC, Kwong CL, Low KH, Che CM (2013) Robust phosphorescent platinum(II) complexes with tetradentate O^N^C^N ligands: high efficiency OLEDs with excellent efficiency stability. Chem Commun 49:1497–1499

    Google Scholar 

  44. Li G, Fleetham T, Li J (2014) Efficient and stable white organic light-emitting diodes employing a single emitter. Adv Mater 26:2931–2936

    Google Scholar 

  45. Cocchi M, Kalinowski J, Murphy L, Williams JAG, Fattori V (2010) Mixing of molecular exciton and excimer phosphorescence to tune color and efficiency of organic LEDs. Org Electron 11:388–396

    Google Scholar 

  46. Zhou GJ, Wang Q, Ho CL, Wong WY, Ma DG, Wang LX (2009) Duplicating “sunlight” from simple WOLEDs for lighting applications. Chem Commun 3574–3576

    Google Scholar 

  47. Zhen H, Jiang C, Yang W, Jiang J, Huang F, Cao Y (2005) Synthesis and properties of electrophosphorescent chelating polymers with iridium complexes in the conjugated backbone. Chem Eur J 11:5007–5016

    Google Scholar 

  48. Kalinowski J, Mezyk J, Meinardi F, Tubino R, Cocchi M, Virgili D (2005) Phosphorescence response to excitonic interactions in Ir organic complex-based electrophosphorescent emitters. J Appl Phys 98:063532-1–063532-3.

    Google Scholar 

  49. Baldo MA, Adachi C, Forrest SR (2000) Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Phys Rev B 62:10967–10977

    Google Scholar 

  50. Ma Y, Zhang H, Shen J, Che C (1998) Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes. Synth Met 94:245–248

    Google Scholar 

  51. Lu J, Tao Y, Chi Y, Tung Y (2005) High-efficiency red electrophosphorescent devices based on new osmium(II) complexes. Synth Met 155:56–62

    Google Scholar 

  52. Chang SH, Chang CF, Liao JL, Chi Y, Zhou DY, Liao LS, Jiang TY, Chou TP, Li EY, Lee GH, Kuo TY, Chou PT (2013) Emissive osmium(II) complexes with tetradentate bis(pyridylpyrazolate) chelates. Inorg Chem 52:5867–5875

    Google Scholar 

  53. Shih PI, Shu CF, Tung YL, Chi Y (2006) Efficient white-light-emitting diodes based on poly(N-vinylcarbazole) doped with blue fluorescent and orange phosphorescent materials. Appl Phys Lett 88:251110-1251110-3.

    Google Scholar 

  54. Liao TC, Chou HT, Juang FS, Tsai YS, Wang SH, Tuan V, Chi Y (2011) Optimizing blue iridium complex and orange-red osmium complex doping concentrations to improve phosphorescent white organic light emitting diodes. Curr Appl Phys 11:S175–S178

    Google Scholar 

  55. Chien CH, Liao SF, Wu CH, Shu CF, Chang SY, Chi Y, Chou PT, Lai CH (2008) Electrophosphorescent polyfluorenes containing osmium complexes in the conjugated backbone. Adv Funct Mater 18:1430–1439

    Google Scholar 

  56. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C (2012) Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492:234–238

    Google Scholar 

  57. Nakanotani H, Masui K, Nishide J, Shibata T, Adachi C (2014) Promising operational stability of high-efficiency organic light-emitting diodes based on thermally activated delayed fluorescence. Sci Rep 3:2127

    Google Scholar 

  58. Masui K, Nakanotani H, Adachi C (2013) Analysis of exciton annihilation in high-efficiency sky-blue organic light-emitting diodes with thermally activated delayed fluorescence. Org Electron 14:2721–2726

    Google Scholar 

  59. Brabec CJ, Sacrificiti NS, Hummelen JC (2001) Plastic solar cells. Adv Funct Mater 11:15–26

    Google Scholar 

  60. Brabec CJ (2004) Organic photovoltaics: technology and market. Sol Energy Mater Sol Cells 83:273–292

    Google Scholar 

  61. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Google Scholar 

  62. Hagfedlt A, Grätzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68

    Google Scholar 

  63. Nazeeruddin MK, Zakeeruddin SM, Lagref JJ, Liska P, Comte P, Barolo C, Viscardi G, Schenk K, Grätzel M (2004) Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell. Coord Chem Rev 248:1317–1328

    Google Scholar 

  64. Argazzi R, Iha NTM, Zabri F, Odobel F, Bignozzi CA (2004) Design of molecular dyes for application in photoelectrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors. Coord Chem Rev 248:1299–1316

    Google Scholar 

  65. Polo AS, Itokazu MK, Iha NYM (2004) Metal complex sensitizers in dye-sensitized solar cells. Coord Chem Rev 248:1343–1361

    Google Scholar 

  66. Meyer GJ (2005) Molecular approaches to solar energy conversion with coordination compounds anchored to semiconductor surfaces. Inorg Chem 44:6852–6864

    Google Scholar 

  67. Robertson N (2006) Optimizing dyes for dye-sensitized solar cells. Angew Chem Int Ed 45:2338–2345

    Google Scholar 

  68. Xie P, Guo F (2007) Molecular engineering of ruthenium sensitizers in dye-sensitized solar cells. Curr Org Chem 11:1272–1286

    Google Scholar 

  69. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Müller E, Liska P, Vlachopoulos N, Grätzel M (1993) Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115:6382–6390

    Google Scholar 

  70. Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Grätzel M (2005) Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J Am Chem Soc 127:16835–16847

    Google Scholar 

  71. Nazeeruddin MK, Pechy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123:1613–1624

    Google Scholar 

  72. Paolo GB, Kiyoshi CDR, Koivisto BD, Berlinguette CP (2012) Cyclometalated ruthenium chromophores for the dye-sensitized solar cell. Coord Chem Rev 256:1438–1450

    Google Scholar 

  73. Gao F, Wang Y, Shi D, Zhang J, Wang MK, Jing XY, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M (2008) Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J Am Chem Soc 130:10720–10728

    Google Scholar 

  74. Cao Y, Bai Y, Yu Q, Cheng Y, Liu S, Shi D, Gao F, Wang P (2009) Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio)thiophene conjugated bipyridine. J Phys Chem C 113:6290–6297

    Google Scholar 

  75. Chen CY, Wang M, Li JY, Pootrakulchote N, Alibabaei L, Ngocle CH, Decoppet D, Tsai JH, Grätzel C, Wu CG, Zakeeruddin SM, Grätzel M (2009) Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3:3103–3109

    Google Scholar 

  76. Bomben PG, Gordon TJ, Schott E, Berlinguette CP (2011) A trisheteroleptic cyclometalated RuII sensitizer that enables high power output in a dye-sensitized solar cell. Angew Chem Int Ed 50:10682–10685

    Google Scholar 

  77. Bomben PG, Robson KCD, Sedach PA, Berlinguette CP (2009) On the viability of cyclometalated Ru(II) complexes for light-harvesting applications. Inorg Chem 48:9631–9643

    Google Scholar 

  78. Chou CC, Wu KL, Chi Y, Hu WP, Yu SJ, Lee GH, Lin CL, Chou PT (2011) Ruthenium(II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells. Angew Chem Int Ed 50:2054–2058

    Google Scholar 

  79. Nguyen PT, Lam BXT, Andersen AR, Hansen PE, Lund T (2011) Photovoltaic performance and characteristics of dye-sensitized solar cells prepared with the N719 thermal degradation products [Ru(LH)2(NCS)(4-tert-butylpyridine)][N(Bu)4] and [Ru(LH)2(NCS)(1-methylbenzimidazole)][N(Bu)4]. Eur J Inorg Chem 2533–2541

    Google Scholar 

  80. Nguyen PT, Degn R, Nguyen HT, Lund T (2009) Thiocyanate ligand substitution kinetics of the solar cell dye Z-907 by 3-methoxypropionitrile and 4-tert-butylpyridine at elevated temperatures. Sol Energy Mater Sol Cells 93:1939–1945

    Google Scholar 

  81. Bomben PG, Koivisto BD, Berlinguette CP (2010) Cyclometalated Ru complexes of type [RuII(N^N)2(C^N)]z: Physicochemical response to substituents installed on the anionic ligand. Inorg Chem 49:4960–4971

    Google Scholar 

  82. Bessho T, Yoneda E, Yum JH, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin MK, Grätzel M (2009) New paradigm in molecular engineering of sensitizers for solar cell applications. J Am Chem Soc 131:5930–5934

    Google Scholar 

  83. Kim JJ, Choi H, Paek S, Kim C, Lim K, Ju MJ, Kang HS, Kang MS, Ko J (2011) A new class of cyclometalated ruthenium sensitizers of the type C^N^N for efficient dye-sensitized solar cells. Inorg Chem 50:11340–11347

    Google Scholar 

  84. Bessho T, Zakeeruddin S, Yeh CY, Diau EG, Grätzel M (2010) Highly efficient mesoscopic dye-sensitized solar cells based on donor–acceptor-substituted porphyrins. Angew Chem Int Ed 49:6646–6649

    Google Scholar 

  85. Yella A, Lee HW, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EGW, Yeh CY, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334:629–634

    Google Scholar 

  86. Kitamura T, Ikeda M, Shigaki K, Inoue T, Anderson NA, Ai X, Lian TQ, Yanagida S (2004) Phenyl-conjugated oligoene sensitizers for TiO2 solar cells. Chem Mater 16:1806–1812

    Google Scholar 

  87. Liang M, Chen J (2013) Arylamine organic dyes for dye-sensitized solar cells. Chem Soc Rev 42:3453–3488

    Google Scholar 

  88. Hwang S, Lee JH, Park C, Lee H, Kim C, Park C, Lee MH, Lee W, Park J, Kim K, Park NG, Kim C (2007) A highly efficient organic sensitizer for dye-sensitized solar cells. Chem Commun 4887–4889

    Google Scholar 

  89. Tsao HN, Burschka J, Yi C, Kessler F, Nazeeruddin MK, Grätzel M (2011) Influence of the interfacial charge-transfer resistance at the counter electrode in dye-sensitized solar cells employing cobalt redox shuttles. Energy Environ Sci 4:4921–4924

    Google Scholar 

  90. Zeng W, Cao Y, Bai Y, Wang Y, Shi Y, Zhang M, Wang F, Pan C, Wang P (2010) Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chem Mater 22:1915–1925

    Google Scholar 

  91. Choi H, Raabe I, Kim D, Teocoli F, Kim C, Song K, Yum JH, Ko J, Nazeeruddin MK, Grätzel M (2010) High molar extinction coefficient organic sensitizers for efficient dye-sensitized solar cells. Chem Eur J 16:1193–1201

    Google Scholar 

  92. Liu B, Zhu W, Zhang Q, Wu W, Xu M, Ning Z, Xie Y, Tian H (2009) Conveniently synthesized isophoronedyes for high efficiency dye-sensitized solar cells: tuning photovoltaic performance by structural modification of donor group in donor–π–acceptor system. Chem Commun 1766–1768

    Google Scholar 

  93. Ito S, Miura H, Uchida S, Takata M, Sumioka K, Liska P, Comte P, Pechy P, Grätzel M (2008) High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem Commun 5194–5196

    Google Scholar 

  94. Bai Y, Zhang J, Zhou D, Wang Y, Zhang M, Wang P (2011) Engineering organic sensitizers for iodine-free dye-sensitized solar cells: red-shifted current response concomitant with attenuated charge recombination. J Am Chem Soc 133:11442–11445

    Google Scholar 

  95. Zhang G, Bala H, Cheng Y, Shi D, Lv X, Yu Q, Wang P (2009) High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer. Chem Commun 2198–2200

    Google Scholar 

  96. Qu S, Qin C, Islam A, Wu Y, Zhu W, Hua J, Tian H, Han L (2012) A novel D–A-π-A organic sensitizer containing a diketopyrrolopyrrole unit with a branched alkyl chain for highly efficient and stable dye-sensitized solar cells. Chem Commun 48:6972–6974

    Google Scholar 

  97. Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48:183–185

    Google Scholar 

  98. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258:1474–1476

    Google Scholar 

  99. McCullough RD, Lowe RD (1992) Enhanced electrical conductivity in regioselectively synthesized poly(3-alkylthiophenes). J Chem Soc Chem Commun 70–72

    Google Scholar 

  100. Morita S, Zakhidov AA, Yoshino K (1992) Doping effect of buckminsterfullerene in conducting polymer: Change of absorption spectrum and quenching of luminescence. Solid State Commun 82:249–252

    Google Scholar 

  101. Irwin MD, Buchholz DB, Hains AW, Chang RPH, Marks TJ (2008) p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. PNAS 105:2783–2787

    Google Scholar 

  102. Chang CY, Wu CE, Chen CY, Cui C, Cheng YJ, Hsu CS, Wang YL, Li Y (2011) Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods. Angew Chem Int Ed 50:9386–9390

    Google Scholar 

  103. Sun Y, Cui C, Wang H, Li Y (2011) Combinatorial screening of polymer:fullerene blends for organic solar cells by inkjet printing. Adv Energy Mater 1:105–108

    Google Scholar 

  104. Guo X, Cui C, Zhang M, Huo L, Huang Y, Hou J, Li Y (2012) High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive. Energy Environ Sci 5:7943–7949

    Google Scholar 

  105. Liao SH, Li YL, Jen TH, Cheng YS, Chen SA (2012) Multiple functionalities of polyfluorene grafted with metal ion-intercalated crown ether as an electron transport layer for bulk-heterojunction polymer solar cells: optical interference, hole blocking, interfacial dipole, and electron conduction. J Am Chem Soc 134:14271–14274

    Google Scholar 

  106. Chu TY, Lu JP, Beaupre S, Zhang YG, Pouliot JR, Wakim S, Zhou JY, Leclerc M, Li Z, Ding JF, Tao Y (2011) Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2’,3’-d]silole copolymer with a power conversion efficiency of 7.3 %. J Am Chem Soc 133:4250–4253

    Google Scholar 

  107. Amb CM, Chen S, Graham KR, Subbiah J, Small CE, So F, Reynolds JR (2011) Dithienogermole as a fused electron donor in bulk heterojunction solar cells. J Am Chem Soc 133:10062–10065

    Google Scholar 

  108. Small CE, Chen S, Subbiah J, Amb CM, Tsang SW, Lai TH, Reynolds JR, So F (2012) High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells. Nat Photonics 6:115–120

    Google Scholar 

  109. Jiang JM, Yang PA, Chen HC, Wei KH (2011) Synthesis, characterization, and photovoltaic properties of a low-bandgap copolymer based on 2,1,3-benzooxadiazole. Chem Commun 47:8877–8879

    Google Scholar 

  110. Huo L, Hou J, Zhang S, Chen HY, Yang Y (2010) A polybenzo[1,2-b:4,5-b’]dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells. Angew Chem Int Ed 49:1500–1503

    Google Scholar 

  111. Dou L, You J, Yang J, Chen CC, He Y, Murase S, Moriarty T, Keith E, Li G, Yang Y (2012) Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat Photonics 6:180–185

    Google Scholar 

  112. Dou L, Chang WH, Gao J, Chen CC, You J, Yang Y (2013) A selenium-substituted low-bandgap polymer with versatile photovoltaic applications. Adv Mater 25:825–831

    Google Scholar 

  113. Cabanetos C, Labban AE, Bartelt JA, Douglas JD, Mateker WR, Frechet JMJ, McGehee MD, Beaujuge PM (2013) Linear side chains in benzo[1,2-b:4,5-b']dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers direct self-assembly and solar cell performance. J Am Chem Soc 135:4656–4659

    Google Scholar 

  114. He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonics 6:591–595

    Google Scholar 

  115. Su YW, Lan SC, Wei KH (2012) Organic photovoltaics. Mater Today 15:554–562

    Google Scholar 

  116. Dou L, Chen CC, Yoshimura K, Ohya K, Chang WH, Gao J, Liu Y, Richard E, Yang Y (2013) Synthesis of 5H-dithieno[3,2-b:2′,3′-d]pyran as an electron-rich building block for donor-acceptor type low-bandgap polymers. Macromolecules 46:3384–3390

    Google Scholar 

  117. Li WW, Furlan A, Hendriks KH, Wienk MM, Janssen RA (2013) Efficient tandem and triple-junction polymer solar cells. J Am Chem Soc 135:5529–5532

    Google Scholar 

  118. Roncali J (2009) Molecular bulk heterojunctions: An emerging approach to organic solar cells. Acc Chem Res 42:1719–1730

    Google Scholar 

  119. Walker B, Kim C, Nguyen TQ (2011) Small molecule solution-processed bulk heterojunction solar cells. Chem Mater 23:470–482

    Google Scholar 

  120. Lin Y, Li Y, Zhan X (2012) Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev 41:4245–4272

    Google Scholar 

  121. Shen S, Jiang P, He C, Zhang J, Shen P, Zhang Y, Yi Y, Zhang Z, Li Z, Li Y (2013) Solution-processable organic molecule photovoltaic materials with bithienyl-benzodithiophene central unit and indenedione end groups. Chem Mater 25:2274–2281

    Google Scholar 

  122. Walker B, Tamayo AB, Dang XD, Zalar P, Seo JH, Garcia A, Tantiwiwat M, Nguyen TQ (2009) Nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells. Adv Funct Mater 19:3063–3069

    Google Scholar 

  123. Zhou JY, Wan XJ, Liu YS, Zuo Y, Li Z, He GG, Long GK, Ni W, Li CX, Su XC, Chen YS (2012) Small molecules based on benzo[1,2-b:4,5-b']dithiophene unit for high-performance solution-processed organic solar cells. J Am Chem Soc 134:16345–16351

    Google Scholar 

  124. Kyaw AKK, Wang DH, Gupta V, Zhang J, Chand S, Bazan GC, Heeger AJ (2013) Efficient solution-processed small-molecule solar cells with inverted structure. Adv Mater 25:2397–2402

    Google Scholar 

  125. Heliatek consolidates its technology leadership by establishing a new world record for organic solar technology with a cell efficiency of 12 % (2013). http://www.heliatek.com/. Accessed Mar 2013

  126. Sun Y, Welch GC, Leong WL, Takacs CJ, Bazan GC, Heeger AJ (2012) Solution-processed small-molecule solar cells with 6.7 % efficiency. Nat Mater 11:44–48

    Google Scholar 

  127. Wu PT, Bull T, Kim FS, Luscombe CK, Jenekhe SA (2009) Organometallic donor-acceptor conjugated polymer semiconductors: tunable optical, electrochemical, charge transport, and photovoltaic properties. Macromolecules 42:671–681

    Google Scholar 

  128. Liu L, Ho CL, Wong WY, Cheung KY, Fung MK, Lam WT, Djurišic AB, Chan WK (2008) Effect of oligothienyl chain length on tuning the solar cell performance in fluorene-based polyplatinynes. Adv Funct Mater 18:2824–2833

    Google Scholar 

  129. Mei J, Ogawa K, Kim YG, Heston NC, Arenas DJ, Nasrollahi Z, McCarley TD, Tanner DB, Reynolds JR, Schanze KS (2009) Low-band-gap platinum acetylide polymers as active materials for organic solar cells. ACS Appl Mater Interfaces 1:150–161

    Google Scholar 

  130. Baek NS, Hau SK, Yip HL, Acton O, Chen KS, Jen AKY (2008) High performance amorphous metallated π-conjugated polymers for field-effect transistors and polymer solar cells. Chem Mater 20:5734–5736

    Google Scholar 

  131. Wong WY, Wang XZ, He Z, Djurišic AB, Yip CT, Cheung KY, Wang H, Mak CSK, Chan WK (2007) Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells. Nat Mater 6:521–527

    Google Scholar 

  132. Wong WY, Wang XZ, He Z, Chan KK, Djurisic AB, Cheung KY, Yip CT, Ng AMC, Xi YY, Mak CSK, Chan WK (2007) Tuning the absorption, charge transport properties, and solar cell efficiency with the number of thienyl rings in platinum-containing poly(aryleneethynylene)s. J Am Chem Soc 129:14372–14380

    Google Scholar 

  133. Shao Y, Yang Y (2005) Efficient organic heterojunction photovoltaic cells based on triplet materials. Adv Mater 17:2841–2844

    Google Scholar 

  134. Yu J, Zang Y, Li H, Huang J (2012) Fill factor enhancement of organic solar cells based on a wide bandgap phosphorescent material and C60. Thin Solid Films 520:6653–6657

    Google Scholar 

  135. Zhen H, Hou Q, Li K, Ma Z, Fabiano S, Gaob F, Zhang F (2014) Solution-processed bulk-heterojunction organic solar cells employing Ir complexes as electron donors. J Mater Chem A 2:12390–12396

    Google Scholar 

  136. Fleetham TB, Wang Z, Li J (2013) Exploring cyclometalated Ir complexes as donor materials for organic solar cells. Inorg Chem 52:7338–7343

    Google Scholar 

Download references

Acknowledgments

We thank the National Basic Research Program of China (973 Program) (2013CB834702); the National Natural Science Foundation of China (project number 51373145); the Science, Technology and Innovation Committee of Shenzhen Municipality (JCYJ20120829154440583); Hong Kong Baptist University (FRG2/12-13/083 and FRG1/13-14/053); Hong Kong Research Grants Council (HKBU203011); and Areas of Excellence Scheme, University Grants Committee of HKSAR, China (project No. AoE/P-03/08). The work was also supported by Partner State Key Laboratory of Environmental and Biological Analysis (SKLP-14-15-P011) and Strategic Development Fund of HKBU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wai-Yeung Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ho, CL., Wong, WY. (2015). Organometallic Versus Organic Molecules for Energy Conversion in Organic Light-Emitting Diodes and Solar Cells. In: Wong, WY. (eds) Organometallics and Related Molecules for Energy Conversion. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46054-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46054-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46053-5

  • Online ISBN: 978-3-662-46054-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics