Skip to main content

10 Fungal Diversity in the Fossil Record

  • Chapter
Systematics and Evolution

Part of the book series: The Mycota ((MYCOTA,volume 7B))

Abstract

Although there have been scattered reports of fossil fungi and funguslike organisms for more than 150 years, fungi have been largely ignored when interpreting the complexity and functioning of terrestrial paleoecosystems. To a large degree this is because fungi were long thought to be too delicate to be sufficiently preserved, and those who might discover them demonstrated insufficient interest and did not possess the appropriate training. Some of the methods traditionally used in the study of fossils have also contributed to a lack of recognition of the diversity of fungi in the fossil record. Today the importance of fungi as major constituents of ecosystem function is a primary focus of mycology. As a result, there has been a paradigm shift in the appreciation of the fungal world in time and space, including fungal diversity in ancient ecosystems. This chapter includes examples of fossil fungi from each of the major lineages and describes our current level of information about their morphology, biology, and evolution. It also provides some directions for future studies of fossil fungi and identifies some questions that only the fossil record can answer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews HN Jr (1980) The fossil hunters: in search of ancient plants. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Barthel M, Krings M, Rössler R (2010) Die schwarzen Psaronien von Manebach, ihre Epiphyten, Parasiten und Pilze. Semana 25:41–60

    Google Scholar 

  • Batra LR, Segal H, Baxter RW (1964) A new Middle Pennsylvanian fossil fungus. Am J Bot 51:991–995

    Google Scholar 

  • Baxter RW (1960) Sporocarpon and allied genera from the American Pennsylvanian. Phytomorph 10:19–25

    Google Scholar 

  • Baxter RW (1975) Fossil fungi from American Pennsylvanian coal balls. Univ Kansas Paleontol Contrib 77:1–6

    Google Scholar 

  • Belova MY, Akhmedov AM (2006) Petsamomyces, a new genus of organic-walled microfossils from the coal-bearing deposits of the Early Proterozoic, Kola Peninsula. Paleontol J 40:465–475

    Google Scholar 

  • Beimforde C, Schäfer N, Dörfelt H, Nascimbene PC, Singh H, Heinrichs J, Reitner J, Rana RS, Schmidt AR (2011) Ectomycorrhizas from a lower Eocene angiosperm forest. New Phytol 192:988–996

    PubMed  Google Scholar 

  • Berbee LM, Taylor JW (2001) Fungal molecular evolution: gene trees and geologic time. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota VIIB. Systematics and evolution. Springer, Berlin, pp 229–245

    Google Scholar 

  • Bidartondo MI (2005) The evolutionary ecology of myco-heterotrophy. New Phytol 167:335–352

    PubMed  Google Scholar 

  • Blair JE (2009) Fungi. In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, New York, pp 215–219

    Google Scholar 

  • Boullard B, Lemoigne Y (1971) Les champignons endophytes du Rhynia gwynne-vaughanii K. & L. Étude morphologique et deductions sur leur biologie. Botaniste 54:49–89

    Google Scholar 

  • Boyce CK, Hotton CL, Fogel ML, Cody GD, Hazen RM, Knoll AH, Hueber FM (2007) Devonian landscape heterogeneity recorded by a giant fungus. Geology 35:399–402

    CAS  Google Scholar 

  • Bradley WH (1967) Two aquatic fungi (Chytridiales) of Eocene age from the Green River Formation of Wyoming. Am J Bot 54:577–582

    Google Scholar 

  • Bray PS, Anderson KB (2009) Identification of Carboniferous (320 million years old) class IC amber. Science 326:132–134

    CAS  PubMed  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77

    CAS  Google Scholar 

  • Burgess ND, Edwards D (1988) A new Palaeozoic plant closely allied to Prototaxites Dawson. Bot J Linn Soc 97:189–303

    Google Scholar 

  • Butterfield NJ (2005) Probable proterozoic fungi. Paleobiology 31:165–182

    Google Scholar 

  • Cantrell SA, Dianese JC, Fell J, Gunde-Cimerman N, Zalar P (2011) Unusual fungal niches. Mycologia 103:1161–1174

    CAS  PubMed  Google Scholar 

  • Cash W, Hick T (1879) On fossil fungi from the lower coal-measures of Halifax. Proc Yorkshire Geol Polytech Soc 7:115–121

    Google Scholar 

  • Caspary R, Klebs R (1907) Die Flora des Bernsteins und anderer fossiler Harze des ostpreußischen Tertiärs. Abh Königl Preuß Geol Landesanst 4:1–181

    Google Scholar 

  • Cloud P (1976) Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiology 2:351–387

    CAS  Google Scholar 

  • Currah RS, Stockey RA, LePage BA (1998) An Eocene tar spot on a fossil palm and its fungal hyperparasite. Mycologia 90:667–673

    Google Scholar 

  • Daghlian CP (1978) A new melioloid fungus from the Early Eocene of Texas. Palaeontology 21:171–176

    Google Scholar 

  • Daugherty LH (1941) The Upper Triassic Flora of Arizona. Carnegie Inst Washington 526:1–108

    Google Scholar 

  • Dennis RL (1970) A middle Pennsylvanian basidiomycete mycelium with clamp connections. Mycologia 62:578–584

    Google Scholar 

  • Dennis RL (1976) Palaeosclerotium, a Pennsylvanian age fungus combining features of modern Ascomycetes and Basidiomycetes. Science 192:66–68

    CAS  PubMed  Google Scholar 

  • Dilcher DL (1965) Epiphyllous fungi from Eocene deposits in western Tennessee, USA. Palaeontographica 116B:1–54

    Google Scholar 

  • Ding ST, Sun BN, Wu JY, Li XC (2011) Miocene Smilax leaves and associated epiphyllous fungi from Zhejiang, East China and their paleoecological implications. Rev Palaeobot Palynol 165:209–223

    Google Scholar 

  • Dörfelt H, Schmidt AR (2005) A fossil Aspergillus from Baltic amber. Mycol Res 109:956–960

    PubMed  Google Scholar 

  • Dotzler N, Krings M, Taylor TN, Agerer R (2006) Germination shields in Scutellospora (Glomeromycota: Diversisporales, Gigasporaceae) from the 400 million-year-old Rhynie chert. Mycol Progr 5:178–184

    Google Scholar 

  • Dotzler N, Walker C, Krings M, Hass H, Kerp H, Taylor TN, Agerer R (2008) Acaulosporoid glomeromycotan spores with a germination shield from the 400-million-year-old Rhynie chert. Mycol Prog 8:9–18

    Google Scholar 

  • Dotzler N, Taylor TN, Galtier J, Krings M (2011) Sphenophyllum (Sphenophyllales) leaves colonized by fungi from the Upper Pennsylvanian Grand-Croix cherts of central France. Zitteliana A 51:3–8

    Google Scholar 

  • Dufrêne YF, Boonaert CJP, Gerin PA, Asther M, Rouxhet PG (1999) Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of Phanerochaete chrysosporium. J Bacteriol 181:5350–5354

    PubMed Central  PubMed  Google Scholar 

  • Edwards D, Axe L (2012) Evidence for a fungal affinity for Nematasketum, a close ally of Prototaxites. Bot J Linn Soc 168:1–18

    Google Scholar 

  • Elsik WC (1996) Fungi. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, volume 1 – principles. AASP Foundation, College Station, Texas, pp 293–305

    Google Scholar 

  • Eshet Y, Rampino MR, Visscher H (1995) Fungal event and palynological record of ecological crisis and recovery across the Permian–Triassic boundary. Geology 23:967–970

    Google Scholar 

  • Fleischmann A, Krings M, Mayr H, Agerer R (2007) Structurally preserved polypores from the Neogene of North Africa: Ganodermites libycus gen. et sp. nov. (Polyporales, Ganodermataceae). Rev Palaeobot Palynol 145:159–172

    Google Scholar 

  • Fletcher BJ, Beerling DJ, Chaloner WG (2004) Stable carbon isotopes and the metabolism of the terrestrial Devonian organism Spongiophyton. Geobiology 2:107–119

    Google Scholar 

  • Gadd GM (2008) Bacterial and fungal geomicrobiology: a problem with communities. Geobiology 6:278–284

    CAS  PubMed  Google Scholar 

  • Galtier J, Phillips TL (1999) The acetate peel technique. In: Jones TP, Rowe NP (eds) Fossil plants and spores: modern techniques. The Geological Society, London, pp 67–70

    Google Scholar 

  • García Massini JL (2007) A possible endoparasitic chytridiomycete fungus from the Permian of Antarctica. Palaeontol Electron 103:16, 14 p, http://palaeo-electronica.org/2007_3/121/index.html

    Google Scholar 

  • García Massini J, Channing A, Guido DM, Zamuner AB (2012) First report of fungi and fungus-like organisms from Mesozoic hot springs. Palaios 27:55–62

    Google Scholar 

  • Gensel PG, Chaloner WG, Forbes WH (1991) Spongiophyton from the late lower Devonian of New Brunswick and Quebec, Canada. Palaeontology 34:149–168

    Google Scholar 

  • Goeppert HR, Berendt GC (1845) Der Bernstein und die in ihm befindlichen Pflanzenreste der Vorwelt. Nicolaische Buchhandlung, Berlin, 125 pp

    Google Scholar 

  • Graham A (1962) The role of fungal spores in palynology. J Paleontol 36:60–68

    Google Scholar 

  • Hallbauer DK, van Warmelo KT (1974) Fossilized plants in thucholite from Precambrian rocks of the Witwatersrand, South Africa. Precambrian Res 1:199–212

    Google Scholar 

  • Hass H, Taylor TN, Remy W (1994) Fungi from the Lower Devonian Rhynie chert: mycoparasitism. Am J Bot 81:29–37

    Google Scholar 

  • Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133

    CAS  PubMed  Google Scholar 

  • Hermann TN, Podkovyrov VN (2006) Fungal remains from the late Riphean. Paleontol J 40:207–214

    Google Scholar 

  • Hibbett DS, Grimaldi DA, Donoghue MJ (1995) Cretaceous mushrooms in amber. Nature 377:487

    CAS  Google Scholar 

  • Hibbett DS, Grimaldi DA, Donoghue MJ (1997a) Fossil mushrooms from Miocene and Cretaceous ambers and the evolution of homobasidiomycetes. Am J Bot 84:981–991

    CAS  PubMed  Google Scholar 

  • Hibbett DS, Donoghue MJ, Tomlinson PB (1997b) Is Phellinites digiustoi the oldest homobasidiomycete? Am J Bot 84:1005–1011

    CAS  PubMed  Google Scholar 

  • Hibbett DS, Binder M, Wang Z, Goldman Y (2003) Another fossil agaric from Dominican amber. Mycologia 95:685–687

    PubMed  Google Scholar 

  • Hobbie EA, Boyce CK (2010) Carbon sources for the Palaeozoic giant fungus Prototaxites inferred from modern analogues. Proc R Soc B Biol Sci 277:2149–2156

    CAS  Google Scholar 

  • Hower JC, O'Keefe JMK, Watt MA, Pratt TJ, Eble CF, Stucker JD, Richardson AR, Kostova IJ (2009) Notes on the origin of inertinite macerals in coals: observations on the importance of fungi in the origin of macrinite. Int J Coal Geol 80:135–143

    CAS  Google Scholar 

  • Hueber FM (2001) Rotted wood-alga-fungus: the history and life of Prototaxites Dawson 1859. Rev Palaeobot Palynol 116:123–159

    Google Scholar 

  • Hughes DP, Wappler T, Labandeira CC (2011) Ancient death-grip leaf scars reveal ant-fungal parasitism. Biol Lett 7:67–70

    PubMed Central  PubMed  Google Scholar 

  • Hutchinson SA (1955) A review of the genus Sporocarpon Williamson. Ann Bot 19:425–435

    Google Scholar 

  • Illman WI (1984) Zoosporic fungal bodies in the spores of the Devonian fossil vascular plant Horneophyton. Mycologia 76:545–547

    Google Scholar 

  • Jahren AH, Porter S, Kuglitsch JJ (2003) Lichen metabolism identified in Early Devonian terrestrial organisms. Geology 31:99–102

    CAS  Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung G-H, Johnson D, O'Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüßler A, Longcore JE, O'Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822

    CAS  PubMed  Google Scholar 

  • Joy WK, Willis AJ, Lacey WS (1956) A rapid cellulose peel technique in paleobotany. Ann Bot 20:635–637

    Google Scholar 

  • Kalgutkar RM, Jansonius J (2000) Synopsis of fossil fungal spores, mycelia, and fructifications. Palynol Soc Contrib Ser 39:1–429

    Google Scholar 

  • Kar RK, Sharma N, Kar R (2004) Occurrence of fossil fungi in dinosaur dung and its implication on food habit. Curr Sci 87:1053–1056

    Google Scholar 

  • Karatygin V, Snigirevskaya NS, Vikulin SV (2009) The most ancient terrestrial lichen Winfrenatia reticulata: a new find and new interpretation. Paleontol J 43:107–114

    Google Scholar 

  • Karling JS (1928) Studies in the Chytridiales III. A parasitic chytrid causing cell hypertrophy in Chara. Am J Bot 15:485–496

    Google Scholar 

  • Karling JS (1973) A note on Blastocladiella (Blastocladiaceae). Mycopath Mycol Appl 49:169–172

    Google Scholar 

  • Kidston R, Lang WH (1917) On Old Red Sandstone plants showing structure, from the Rhynie Chert Bed, Aberdeenshire. Part I. Rhynia gwynne-vaughani, Kidston and Lang. Trans R Soc Edinb 51(Part 3(24)):763–784

    Google Scholar 

  • Kidston R, Lang WH (1920a) On Old Red Sandstone plants showing structure, from the Rhynie Chert Bed, Aberdeenshire. Part II. Additional notes on Rhynia gwynne-vaughani, Kidston and Lang; with descriptions of Rhynia major, n.sp., and Hornea lignieri, n.g. n.sp. Trans R Soc Edinb 52(Part 3(24)):603–627

    Google Scholar 

  • Kidston R, Lang WH (1920b) On Old Red Sandstone plants showing structure, from the Rhynie Chert bed, Aberdeenshire. Part III. Asteroxylon mackiei, Kidston and Lang. Trans R Soc Edinb 52(Part 3(26)):643–680

    Google Scholar 

  • Kidston R, Lang WH (1921a) On Old Red Sandstone plants showing structure, from the Rhynie Chert Bed, Aberdeenshire. Part IV. Restorations of the vascular cryptogams, and discussion of their bearing on the general morphology of the Pteridophyta and the origin of the organisation of land-plants. Trans R Soc Edinb 52:831–854

    Google Scholar 

  • Kidston R, Lang WH (1921b) On Old Red Sandstone plants showing structure, from the Rhynie Chert Bed, Aberdeenshire. Part V. The Thallophyta occurring in the peat-bed; the succession of the plants throughout a vertical section of the bed, and the conditions of accumulation and preservation of the deposit. Trans R Soc Edinb 52:855–902

    Google Scholar 

  • Krassilov VA (1981) Orestovia and the origin of land plants. Lethaia 14:235–250

    Google Scholar 

  • Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ (2007a) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host response. New Phytol 174:648–657

    PubMed  Google Scholar 

  • Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ (2007b) An alternative mode of early land plant colonization by putative endomycorrhizal fungi. Plant Signal Behav 2:125–126

    PubMed Central  PubMed  Google Scholar 

  • Krings M, Dotzler N, Taylor TN (2009a) Globicultrix nugax nov. gen. et spec. (Chytridiomycota), an intrusive microfungus in fungal spores from the Rhynie chert. Zitteliana A 48(49):165–170

    Google Scholar 

  • Krings M, Dotzler N, Galtier J, Taylor TN (2009b) Microfungi from the upper Visean (Mississippian) of central France: Chytridiomycota and chytrid-like remains of uncertain affinity. Rev Palaeobot Palynol 156:319–328

    Google Scholar 

  • Krings M, Galtier J, Taylor TN, Dotzler N (2009c) Chytrid-like microfungi in Biscalitheca cf. musata (Zygopteridales) from the Upper Pennsylvanian Grand-Croix cherts (Saint-Etienne Basin, France). Rev Palaeobot Palynol 157:309–316

    Google Scholar 

  • Krings M, Dotzler N, Taylor TN, Galtier J (2009d) A Late Pennsylvanian fungal leaf endophyte from Grand-Croix, France. Rev Palaeobot Palynol 156:449–453

    Google Scholar 

  • Krings M, Dotzler N, Longcore JE, Taylor TN (2010a) An unusual microfungus in a fungal spore from the Lower Devonian Rhynie chert. Palaeontol 53:753–759

    Google Scholar 

  • Krings M, Dotzler N, Taylor TN, Galtier J (2010b) Microfungi from the upper Visean (Mississippian) of central France: structure and development of the sporocarp Mycocarpon cinctum nov. sp. Zitteliana A 50:127–135

    Google Scholar 

  • Krings M, Dotzler N, Galtier J, Taylor TN (2010c) Oldest fossil basidiomycete clamp connections. Mycoscience 52:18–23

    Google Scholar 

  • Krings M, Taylor TN, White JF (2011a) Fungal sporocarps from the Carboniferous: an unusual specimen of Traquairia. Rev Palaeobot Palynol 168:1–6

    Google Scholar 

  • Krings M, Dotzler N, Taylor TN (2011b) Mycoparasitism in Dubiocarpon, a fungal sporocarp from the Carboniferous. Neues Jahrb Geol Paläontol 262:241–245

    Google Scholar 

  • Krings M, Taylor TN, Dotzler N, Galtier J (2011c) Fungal remains in cordaite (Cordaitales) leaves from the Upper Pennsylvanian of central France. Bull Geosci 86:777–784

    Google Scholar 

  • Krings M, Taylor TN, Taylor EL, Dotzler N, Walker C (2011d) Arbuscular mycorrhizal-like fungi in Carboniferous arborescent lycopsids. New Phytol 191:311–314

    PubMed  Google Scholar 

  • Krings M, Taylor TN, Dotzler N, Persichini G (2012) Fossil fungi with suggested affinities to the Endogonaceae from the Middle Triassic of Antarctica. Mycologia 104:835–844

    PubMed  Google Scholar 

  • Langenheim JH (2003) Plant resins – chemistry, evolution, ecology, ethnobotany. Timber Press, Portland, OR

    Google Scholar 

  • Lesquereux L (1877) A species of fungus recently discovered in the shales of the Darlington Coal Bed (Lower Productive Coal Measures, Alleghany River Series) at Cannelton, in Beaver County, Pennsylvania. Proc Am Philos Soc 17(100):173–175

    Google Scholar 

  • Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940

    CAS  PubMed  Google Scholar 

  • Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonizing dark septate endophytic fungi. Stud Mycol 53:173–189

    Google Scholar 

  • McLaughlin DJ (1976) On Palaeosclerotium as a link between ascomycetes and basidiomycetes. Science 193:602

    CAS  PubMed  Google Scholar 

  • Meschinelli A (1898) Fungorum fossilium omnium, hucusque cognitorum, iconographia: Volumen unicum. Typis Aloysii Fabris and C, Venice

    Google Scholar 

  • Millay MA, Taylor TN (1978) Chytrid-like fossils of Pennsylvanian age. Science 200:1147–1149

    CAS  PubMed  Google Scholar 

  • Mims CW, Richardson EA, Clay RP, Nicholson RL (1995) Ultrastructure of conidia and the conidium aging process in the plant pathogenic fungus Colletotrichum gramnicola. Int J Plant Sci 156:9–18

    Google Scholar 

  • Mindell RA, Stockey RA, Beard G, Currah RS (2007) Margaretbarromyces dictyosporus gen. sp. nov.: a permineralized corticolous ascomycete from the Eocene of Vancouver Island, British Columbia. Mycol Res 111:680–684

    PubMed  Google Scholar 

  • Nagovitsin K (2009) Tappania-bearing association of the Siberian platform: biodiversity, stratigrahic position and geochronological constraints. Precambrian Res 173:137–145

    CAS  Google Scholar 

  • Oliver FW (1903) Notes on fossil fungi. New Phytol 3:49–53

    Google Scholar 

  • Peterson EB (2000) A overlooked fossil lichen (Lobariaceae). Lichenologist 32:298–300

    Google Scholar 

  • Phillips TL, Avcin MJ, Berggren DE (1976) Fossil peat from the Illinois Basin. A guide to the study of coal-balls of Pennsylvanian age. Ill St Geol Educ Ser 11:1–39

    Google Scholar 

  • Phipps CJ (2006) Entopeltacites remberi sp. nov. from the Miocene of Clarkia, Idaho, USA. Rev Palaeobot Palynol 145:193–200

    Google Scholar 

  • Phipps CJ, Taylor TN (1996) Mixed arbuscular mycorrhizae from the Triassic of Antarctica. Mycologia 88:707–714

    Google Scholar 

  • Phipps CJ, Rember WC (2004) Epiphyllous fungi from the Miocene of Clarkia, Idaho: reproductive structures. Rev Palaeobot Palynol 129:67–79

    Google Scholar 

  • Pirozynski KA (1976) Fossil fungi. Annu Rev Phytopathol 14:237–246

    Google Scholar 

  • Pirozynski KA, Dalpé Y (1989) Geological history of the Glomaceae with particular reference to mycorrhizal symbiosis. Symbiosis 7:1–36

    Google Scholar 

  • Pirozynski KA, Malloch D (1975) The origin of land plants: a matter of mycotrophism. BioSyst 6:153–164

    CAS  Google Scholar 

  • Pirozynski KA, Weresub KL (1979) A biogeographic view of the history of ascomycetes and the development of their pleomorphism. In: Kendricks B (ed) The whole fungus, vol 1, Kananaskis Foundation. National Museum of the Natural Sciences, National Museums of Canada, and Kananaskis Foundation, Ottawa, ON, pp 93–123

    Google Scholar 

  • Pons D, Boureau E (1977) Les champignons epiphylls d’un Frenelopsis du Cenomanian moyen de l’Anjou (France). Rev Mycol 41:349–358

    Google Scholar 

  • Porter TM, Martin W, James TY, Longcore JE, Gleason FH, Adler PH, Letcher PM, Vilgalys R (2011) Molecular phylogeny of the Blastocladiomycota (Fungi) based on nuclear ribosomal DNA. Fungal Biol 115:381–392

    CAS  PubMed  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    CAS  PubMed  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2002) Palaeoglomus grayi from the Ordovician. Mycotaxon 84:33–37

    Google Scholar 

  • Remy W, Taylor TN, Hass H (1994a) Early Devonian fungi: a blastocladalean fungus with sexual reproduction. Am J Bot 81:690–702

    Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994b) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci U S A 91:11841–11843

    PubMed Central  CAS  PubMed  Google Scholar 

  • Renault B (1894) Sur quelques nouveaux parasites des Lépidodendrons. Soc Hist Nat d’Autun Procès Verbal Séances 1893:168–178

    Google Scholar 

  • Renault B (1895a) Chytridinées fossiles du Dinantien (Culm). Rev Mycol 17:158–161

    Google Scholar 

  • Renault B (1895b) Parasites des écorces de Lépidodendrons. Naturaliste 9:77–78

    Google Scholar 

  • Renault B (1896a) Recherches sur les Bactériacées fossils. Ann Sci Nat Bot Sér 8(2):275–349

    Google Scholar 

  • Renault B (1896b) Bassin Houiller et Permien d’Autun et d’Épinac. Fascicule IV: Flore fossile, deuxième partie (Études des Gîtes Minéraux de la France). Imprimerie Nationale, Paris

    Google Scholar 

  • Renault B (1899/1900) Sur quelques microorganismes des combustibles fossils. Société de l’Imprimerie Théolier. J Thomas et Cie, Saint-Étienne (text 1900, atlas 1899)

    Google Scholar 

  • Renault B (1903) Sur quelques nouveaux champignons et algues fossiles, de l’époque houillère. C R Acad Sci Paris 136:904–907

    Google Scholar 

  • Renault B, Bertrand CE (1885) Grilletia spherospermii, Chytridiacée fossile du terrain houiller supérieur. C R Acad Sci Paris 100:1306–1308

    Google Scholar 

  • Retallack GJ (1994) Were the Ediacaran fossils lichens? Paleobiology 20:523–544

    Google Scholar 

  • Retallack GJ (2009) Cambrian–Ordovician non-marine fossils from South Australia. Alcheringa 33:355–391

    Google Scholar 

  • Rikkinen J, Poinar GO (2008) A new species of Phyllopsora (Lecanorales, lichen-forming Ascomycota) from the Dominican amber, with remarks on the fossil history of lichens. J Exp Bot 59:1007–1011

    CAS  PubMed  Google Scholar 

  • Rikkinen J, Dörfelt H, Schmidt AR, Wunderlich J (2003) Sooty moulds from European Tertiary amber, with notes on the systematic position of Rosaria (Cyanobacteria). Mycol Res 107:251–256

    PubMed  Google Scholar 

  • Rothwell GW (1972) Palaeosclerotium pusillum gen. et sp. nov., a fossil eumycete from the Pennsylvanian of Illinois. Can J Bot 50:2353–2356

    Google Scholar 

  • Schmid R (1976) Septal pores in Prototaxites, an enigmatic Devonian plant. Science 191:287–288

    CAS  PubMed  Google Scholar 

  • Schmidt AR, Dörfelt H, Perrichot V (2007) Carnivorous fungi from Cretaceous amber. Science 318:1743

    CAS  PubMed  Google Scholar 

  • Schüßler A, Walker C (2011) Evolution of the ‘plant-symbiotic’ fungal phylum, Glomeromycota. In: Pöggeler S, Wöstemeyer J (eds) The Mycota XIV. Evolution of fungi and fungal-like organisms. Springer, Berlin Heidelberg New York, pp 163–185

    Google Scholar 

  • Schwendemann AB, Decombeix A-L, Taylor TN, Taylor EL, Krings M (2011) Morphological and functional stasis in mycorrhizal root nodules as exhibited by a Triassic conifer. Proc Natl Acad Sci U S A 108:13630–13634

    PubMed Central  CAS  PubMed  Google Scholar 

  • Selosse MA (2002) Prototaxites: a 400 myr old giant fossil, a saprophytic holobasidiomycete, or a lichen? Mycol Res 106:642–644

    Google Scholar 

  • Sharma N, Kar RK, Agarwal A, Kar R (2005) Fungi in dinosaurian (Isisaurus) coprolites from the Lameta Formation (Maastrichtian) and its reflection on food habit and environment. Micropaleontology 51:73–82

    Google Scholar 

  • Sheffy MV, Dilcher DL (1971) Morphology and taxonomy of fungal spores. Palaeontographica 133B:34–51

    Google Scholar 

  • Sherwood-Pike MA, Gray J (1985) Silurian fungal remains: probable records of the class Ascomycetes. Lethaia 18:1–20

    Google Scholar 

  • Shi G, Zhou Z, Xie Z (2010) A new Cephalotaxus and associated epiphyllous fungi from the Oligocene of Guangxi, South China. Rev Palaeobot Palynol 161:179–195

    Google Scholar 

  • Singer R (1977) An interpretation of Palaeosclerotium. Mycologia 69:850–854

    Google Scholar 

  • Singh SK, Chauhan MS (2008) Fungal remains from the Neogene sediments of Mahuadanr Valley, Latehar district, Jharkhand, India and their palaeoclimatic significance. J Palaeontol Soc India 53:73–81

    Google Scholar 

  • Smith J (1898) On the discovery of fossil microscopic plants in the fossil amber of the Ayrshire coal-field. Trans Geol Soc Glasgow 10:318–322

    Google Scholar 

  • Smith PH (1980) Trichothyriaceous fungi from the Early Tertiary of southern England. Palaeontol 23:205–212

    Google Scholar 

  • Smith SY, Currah RS, Stockey RA (2004) Cretaceous and Eocene poroid hymenophores from Vancouver Island, British Columbia. Mycologia 96:180–186

    PubMed  Google Scholar 

  • Smith WG (1884) Diseases of field and garden crops chiefly such as are caused by fungi. MacMillan, London

    Google Scholar 

  • Speranza M, Wierzchos J, Alonso J, Bettuchi L, Martín-González A, Ascaso C (2010) Traditional and new microscopy techniques applied to the study of microscopic fungi included in amber. In: Méndez-Vilas A, Díaz J (eds) Microscopy: science, technology, application and education, vol 2, Formatex. Badajoz, Spain, pp 1135–1145

    Google Scholar 

  • Stanevich AM, Maksimova EN, Kornilova TA, Mazukabzov AM, Gladkochub DP (2007) Microfossils of the late Proterozoic Debengdinskaya Formation of the Olenekskiy uplift. Bull Tomsk Polytech Univ 311:9–14

    Google Scholar 

  • Stein WE, Harmon GD, Hueber FM (1993) Spongiophyton from the Lower Devonian of North America reinterpreted as a lichen. Am J Bot 80(6 Suppl Abstr):93

    Google Scholar 

  • Strullu-Derrien C, Strullu D-G (2007) Mycorrhization of fossil and living plants. C R Palevol 6:483–494

    Google Scholar 

  • Strullu-Derrien C, Rioult JP, Strullu DG (2009) Mycorrhizas in Upper Carboniferous Radiculites-type cordaitalean rootlets. New Phytol 182:561–564

    PubMed  Google Scholar 

  • Stubblefield SP, Banks HP (1983) Fungal remains in the Devonian trimerophyte Psilophyton dawsonii. Am J Bot 70:1258–1261

    Google Scholar 

  • Stubblefield SP, Taylor TN (1983) Studies of Paleozoic fungi. I. The structure and organization of Traquairia (Ascomycota). Am J Bot 70:387–399

    Google Scholar 

  • Stubblefield SP, Taylor TN (1986) Wood decay in silicified gymnosperms from Antarctica. Bot Gaz 147:116–125

    Google Scholar 

  • Stubblefield SP, Taylor TN (1988) Recent advances in paleomycology. New Phytol 108:3–25

    Google Scholar 

  • Stubblefield SP, Taylor TN, Miller CE, Cole GT (1983) Studies in Carboniferous fungi. II. The structure and organization of Mycocarpon, Sporocarpon, Dubiocarpon, and Coleocarpon (Ascomycotina). Am J Bot 70:1482–1498

    Google Scholar 

  • Stubblefield SP, Taylor TN, Beck CB (1985) Studies of Paleozoic fungi. V. Wood-decaying fungi in Callixylon newberryi from the Upper Devonian. Am J Bot 72:1765–1774

    Google Scholar 

  • Sung GH, Poinar GO Jr, Spatafora JW (2008) The oldest fossil evidence of animal parasitism by fungi supports a Cretaceous diversification of fungal-arthropod symbioses. Mol Phylogenet Evol 49:495–502

    PubMed  Google Scholar 

  • Taylor TN (1993) Fungi. In: Benton MJ (ed) The fossil record 2. Chapman & Hall, London, pp 9–13

    Google Scholar 

  • Taylor TN, White JF Jr (1989) Fossil fungi (Endogonaceae) from the Triassic of Antarctica. Am J Bot 76:389–396

    Google Scholar 

  • Taylor TN, Hass H, Remy W (1992a) Devonian fungi: interactions with the green alga Palaeonitella. Mycologia 84:901–910

    Google Scholar 

  • Taylor TN, Remy W, Hass H (1992b) Fungi from the Lower Devonian Rhynie chert: Chytridiomycetes. Am J Bot 79:1233–1241

    Google Scholar 

  • Taylor TN, Galtier J, Axsmith BJ (1994) Fungi from the Lower Carboniferous of central France. Rev Palaeobot Palynol 83:253–260

    Google Scholar 

  • Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the Early Devonian. Mycologia 87:560–573

    Google Scholar 

  • Taylor TN, Hass H, Kerp H (1997) A cyanolichen from the lower Devonian Rhynie chert. Am J Bot 84:992–1004

    CAS  PubMed  Google Scholar 

  • Taylor TN, Klavins SD, Krings M, Taylor EL, Kerp H, Hass H (2004a) Fungi from the Rhynie chert: a view from the dark side. Trans R Soc Edinb Earth Sci 94:457–473

    Google Scholar 

  • Taylor TN, Krings M, Klavins SD, Taylor EL (2005a) Protoascon missouriensis, a complex fossil microfungus revisited. Mycologia 97:725–729

    PubMed  Google Scholar 

  • Taylor TN, Kerp H, Hass H (2005b) Life history biology of early land plants: deciphering the gametophyte phase. Proc Natl Acad Sci U S A 102:5892–5897

    PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor TN, Hass H, Kerp H, Krings M, Hanlin RT (2005c) Perithecial ascomycetes from the 400 million year old Rhynie chert: an example of ancestral polymorphism. Mycologia 97:269–285

    CAS  PubMed  Google Scholar 

  • Taylor TN, Taylor EL, Krings M (2009) Paleobotany: the biology and evolution of fossil plants, 2nd edn. Academic, Burlington, MA

    Google Scholar 

  • Taylor TN, Taylor EL, Decombeix AL, Schwendemann A, Serbet R, Escapa I, Krings M (2010) The enigmatic Devonian fossil Prototaxites is not a rolled-up liverwort mat: comment on the paper by Graham et al. (AJB 97: 268–275). Am J Bot 97:1074–1078

    PubMed  Google Scholar 

  • Taylor TN, Krings M, Dotzler N, Galtier J (2011) The advantage of thin section preparations over acetate peels in the study of late Paleozoic fungi and other microorganisms. Palaios 26:239–244

    Google Scholar 

  • Taylor TN, Krings M, Galtier J, Dotzler N (2012) Fungal endophytes in Astromyelon-type (Sphenophyta, Equisetales, Calamitaceae) roots from the Upper Pennsylvanian of France. Rev Palaeobot Palynol 171:9–18

    Google Scholar 

  • Taylor TN, Krings M, Taylor EL (2015) Fossil fungi. Academic, Burlington, MA

    Google Scholar 

  • Taylor WA, Free C, Boyce CK, Helgemo R, Ochoads J (2004b) SEM analysis of Spongiophyton interpreted as a fossil lichen. Int J Plant Sci 165:875–881

    Google Scholar 

  • Tiffney BH, Barghoorn ES (1974) The fossil record of the fungi. Occas Papers Farlow Herb 7:1–42

    Google Scholar 

  • Tripathi SKM (2009) Fungi from palaeoenvironments: their role in environmental interpretations. In: Misra JK, Deshmukh SK (eds) Fungi from different environments. Science Publishers, Lucknow, India, pp 1–27

    Google Scholar 

  • Unger F (1850) Genera et species plantarum fossilium. Wilhelm Baumüller, Vienna

    Google Scholar 

  • Vajda V, McLoughlin S (2004) Fungal proliferation at the Cretaceous–Tertiary boundary. Science 303:1489

    CAS  PubMed  Google Scholar 

  • Van der Ham RWJM, Dortangs RW (2005) Structurally preserved ascomycetous fungi from the Maastrichtian type area (NE Belgium). Rev Palaeobot Palynol 136:48–62

    Google Scholar 

  • Visscher H, Sephton MA, Looy CV (2011) Fungal virulence at the time of the end-Permian biosphere crisis. Geology 39:883–886

    Google Scholar 

  • Waggoner BM (1995) Ediacaran lichens: a critique. Paleobiology 21:393–397

    Google Scholar 

  • Wagner CA, Taylor TN (1981) Evidence for endomycorrhizae in Pennsylvanian age plant fossils. Science 212:562–563

    CAS  PubMed  Google Scholar 

  • Wagner CA, Taylor TN (1982) Fungal chlamydospores from the Pennsylvanian of North America. Rev Palaeobot Palynol 37:317–328

    Google Scholar 

  • Wang B, Qiu Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    CAS  PubMed  Google Scholar 

  • Wang X, Krings M, Taylor TN (2010) A thalloid organism with possible lichen affinity from the Jurassic of northeastern China. Rev Palaeobot Palynol 162:591–598

    Google Scholar 

  • Weiss FE (1904) A mycorrhiza from the Lower Coal Measures. Ann Bot 18:255–265

    Google Scholar 

  • Wells AK, Hill RS (1993) Epiphyllous microorganisms as palaeoclimate estimators: the developmental sequence of fungal ‘germlings’ on their living host. Aust Syst Bot 6:377–386

    Google Scholar 

  • White JF, Taylor TN (1989) Triassic fungi with suggested affinities to the Endogonales (Zygomycotina). Rev Palaeobot Palynol 61:53–61

    Google Scholar 

  • White JF, Taylor TN (1991) Fungal sporocarps from Triassic peat deposits in Antarctica. Rev Palaeobot Palynol 67:229–236

    Google Scholar 

  • Williamson WC (1878) On the organization of the fossil plants of the Coal-Measures. Part IX. Philos Trans R Soc Lond 169:319–364

    Google Scholar 

  • Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017–1020

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas N. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Taylor, T.N., Krings, M., Taylor, E.L. (2015). 10 Fungal Diversity in the Fossil Record. In: McLaughlin, D., Spatafora, J. (eds) Systematics and Evolution. The Mycota, vol 7B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46011-5_10

Download citation

Publish with us

Policies and ethics