Skip to main content

1 Saccharomycotina and Taphrinomycotina: The Yeasts and Yeastlike Fungi of the Ascomycota

  • Chapter
Systematics and Evolution

Part of the book series: The Mycota ((MYCOTA,volume 7B))

Abstract

The phylum Ascomycota has been resolved into three major phylogenetic lineages: the subphyla Saccharomycotina (e.g., Saccharomyces, Pichia, Candida), Taphrinomycotina (e.g., Protomyces, Taphrina, Pneumocystis), and Pezizomycotina (e.g., Aspergillus, Neurospora, Peziza). We discuss the ecology, physiology, molecular biology, biotechnology, phylogeny, and systematics of Saccharomycotina and Taphrinomycotina, which represent the yeasts and yeastlike fungi of Ascomycota. Major changes in all aspects of our knowledge of these two subphyla have resulted from molecular studies, and the focus of the chapter is on these changes and their impact on present and future applications of the yeasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth GC (1971) Ainsworth & Bisby’s dictionary of the fungi, 6th edn. Commonwealth Mycological Institute, Kew

    Google Scholar 

  • Alcoba-Flórez J, Méndez-Álvarez S, Cano J, Guarro J, Pérez-Roth E, Arévalo M (2005) Phenotypic and molecular characterization of Candida nivariensis sp. nov., a possible new opportunistic fungus. J Clin Microbiol 43:4107–4111

    PubMed Central  PubMed  Google Scholar 

  • Allison SD, McGuire KL, Treseder KK (2010) Resistance of microbial and soil properties to warming treatment seven years after boreal fire. Soil Biol Biochem 42:1872–1878

    CAS  Google Scholar 

  • Arnaud G (1913) Sur le genre Eremothecium Borzi. Bull Trim Soc Mycol Fr 29:572–576

    Google Scholar 

  • Andrews JH (1992) Biological control in the phyllosphere. Annu Rev Phytopathol 30:603–635

    CAS  PubMed  Google Scholar 

  • Batra LR (1973) Nematosporaceae (Hemiascomycetidiae): taxonomy, pathogenicity, distribution and vector relations. Tech Bull No 1469, US Dept of Agriculture, Washington, DC

    Google Scholar 

  • Beech FW, Davenport RR (1971) Isolation, purification and maintenance of yeasts. In: Morris JR, Ribbons DW (eds) Methods in microbiology, vol 4. Academic, New York, pp 153–182

    Google Scholar 

  • Beijerinck MW (1889) L’auxanographie, ou la méthode de l’hydrodiffusion dans la gélatine appliquée aux recherchesmicrobiologiques. Arch Néerl Sci Exactes Nat 23:367–372

    Google Scholar 

  • Belloch C, Querol A, Garcia MD, Barrio E (2000) Phylogeny of the genus Kluyveromyces inferred from the mitochondrial cytochrome-c oxidase II gene. Int J Syst Evol Microbiol 50:405–416

    CAS  PubMed  Google Scholar 

  • Berbee ML, Taylor JW (1993) Ascomycete relationships: dating the origin of asexual lineages with 18S ribosomal RNA gene sequence data. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford, pp 67–78

    Google Scholar 

  • Bialkova A, Subik J (2006) Biology of the pathogenic yeast Candida glabrata. Folia Microbiol (Praha) 51:3–20

    CAS  Google Scholar 

  • Bills GF, Foster MS (2004) Formulae for selected materials used to isolate and study fungi and fungalales. In: Bills GF, Fostser MS, Mueller GM (eds) Biodiversity of fungi. Inventory and monitoring methods. Elsevier, Amsterdam, pp 595–618

    Google Scholar 

  • Blackwell M (2011) The fungus: 1, 2, 3…5.1 million species? Am J Bot 98:426–438

    PubMed  Google Scholar 

  • Bowen AR, Chen-Wu JL, Momany M, Young R, Szaniszlo PJ, Robbins PW (1992) Classification of fungal chitin synthases. Proc Natl Acad Sci U S A 89:519–523

    PubMed Central  CAS  PubMed  Google Scholar 

  • Buckley HR (1971) Fungi pathogenic for man and animals: 2. The subcutaneous and deep-seated mycoses. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 4. Academic, New York, pp 461–478

    Google Scholar 

  • Butler EE, Webster RK, Eckert JW (1965) Taxonomy, pathogenicity and physiological properties of the fungus causing sour rot of citrus. Phytopathology 55:1262–1268

    Google Scholar 

  • Cain RF (1972) Evolution of the fungi. Mycologia 64:1–14

    Google Scholar 

  • Cavalier-Smith T (1987) The origin of fungi and pseudofungi. In: Rayner ADM, Brasier CM, Moore D (eds) Evolutionary biology of the fungi. Cambridge University Press, Cambridge, pp 339–353

    Google Scholar 

  • Chalutz E, Droby S, Cohen L, Weiss B, Barkai-Golan R, Daus A, Fuchs Y, Wilson CL (1991) Biological control of Botrytis, Rhizopus, and Alternaria rots of tomato fruit by Pichia guilliermondii. In: Wilson CL, Chalutz E (eds) Biological control of postharvest diseases of fruits and vegetables. Workshop Proc. US GPO, Washington, DC, pp 71–85

    Google Scholar 

  • Correia A, Sampaio P, James S, Pais C (2006) Candida bracarensis sp. nov., a novel anamorphic yeast species phenotypically similar to Candida glabrata. Int J Syst Evol Microbiol 56:313–317

    CAS  PubMed  Google Scholar 

  • Crandall MA, Brock TD (1968) Molecular basis of mating in the yeast Hansenula wingei. Bacteriol Rev 32:139–163

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cregg JM, Madden KR (1988) Development of the methylotrophic yeast, Pichia pastoris, as a host system for the production of foreign proteins. Dev Ind Microbiol 29:33–41

    CAS  Google Scholar 

  • Cushion MT, Keely SP (2011) Pneumocystis Delanoë & Delanoë. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 709–717

    Google Scholar 

  • Daniel H-M, Meyer W (2003) Evaluation of ribosomal RNA and actin gene sequences for the identification of ascomycetous yeasts. Int J Food Microbiol 86:71–78

    Google Scholar 

  • Daniel H-M, Sorrell TC, Meyer W (2001) Partial sequence analysis of the actin gene and its potential for studying the phylogeny of Candida species and their teleomorphs. Int J Syst Evol Microbiol 51:1593–1606

    CAS  PubMed  Google Scholar 

  • Daughtrey ML, Hodge KT, Shishkoff N (2003) Archiascomycete and Hemiascomycete pathogens. In: Trigiano RN, Windham MT, Windham AS (eds) Plant pathology: concepts and laboratory exercises. CRC, Boca Raton, FL, pp 111–116

    Google Scholar 

  • Deak T (2003) Detection, enumeration and isolation of yeasts. In: Boekhout T, Robert V (eds) Yeasts in food: beneficial and detrimental aspects. Behr’s Verlag, Hamburg, pp 39–68

    Google Scholar 

  • de Koning W, Harder W (1992) Methanol-utilizing yeasts. In: Murell JC, Dalton H (eds) Methane and methanol utilizers. Plenum, New York, pp 207–244

    Google Scholar 

  • do Carmo-Sousa L (1969) Endospore formation in the genus Trichosporon. In: Kocková-Kratochvílová A (ed) Proc 2nd symp on yeasts, 1966, Bratislava, pp 87–92

    Google Scholar 

  • Droby S, Hofstein R, Wilson CL, Wisniewski M, Fridlender B, Cohen L, Weiss B, Daus A, Timar D, Chalutz E (1993) Pilot testing of Pichia guilliermondii: a biocontrol agent of postharvest diseases of citrus fruit. Biol Control 3:47–52

    Google Scholar 

  • Droby S, Cohen L, Daus A, Weiss B, Horev B, Chalutz E, Katz H, Keren-Tzur M, Shachnai A (1998) Commercial testing of Aspire: a yeast preparation for the biological control of postharvest decay of citrus. Biol Control 12:97–101

    Google Scholar 

  • Dubos RJ (1960) Louis Pasteur, free lance of science. De Capo, New York

    Google Scholar 

  • Dykhuizen DE, Green L (1991) Recombination in Escherichia coli and the definition of biological species. J Bacteriol 173:7257–7268

    PubMed Central  CAS  PubMed  Google Scholar 

  • Edman JC, Kovacs JA, Masur H, Santi DV, Elwood HJ, Sogin ML (1988) Ribosomal RNA sequence shows Pneumocystis carinii to be a member of the fungi. Nature 334:519–522

    CAS  PubMed  Google Scholar 

  • Eriksson OE, Hawksworth DL (1995) Notes on ascomycete systematics—nos. 1885–2023. Syst Ascomyc 14:41–77

    Google Scholar 

  • Fall R, Benson A (1996) Leaf methanol—the simplest natural product from plants. Trends Plant Sci 1:296–301

    Google Scholar 

  • Fitzpatrick DA, Logue ME, Stajich JE, Butler G (2006) A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol 6:99–113

    PubMed Central  PubMed  Google Scholar 

  • Fleet GH (1990) Food spoilage yeasts. In: Spencer JFT, Spencer DM (eds) Yeast technology. Springer, Berlin, pp 124–166

    Google Scholar 

  • Fonseca Á, Rodrigues MG (2011) Taphrina Fries (1832). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 823–858

    Google Scholar 

  • Garner R, Walker AN, Horst MN (1991) Morphologic and biochemical studies of chitin expression in Pneumocystis carinii. J Protozool 38:125–145

    Google Scholar 

  • Gellissen G, Kunze G, Gaillardin C, Cregg JM, Berardi E, Veenhuis EM, van der Klei I (2005) New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica—a comparison. FEMS Yeast Res 5:1079–1096

    CAS  PubMed  Google Scholar 

  • Goodman M (1976) Protein sequences in phylogeny. In: Ayala FJ (ed) Molecular evolution. Sinauer Associates, Sunderland, MA, pp 141–159

    Google Scholar 

  • Goto S, Sugiyama J (1970) Studies on Himalayan yeasts and molds (IV). Several asporogenous yeasts, including two new taxa of Cryptococcus. Can J Bot 48:2097–2101

    Google Scholar 

  • Goto S, Sugiyama J, Hamamoto M, Komagata K (1987) Saitoella, a new anamorphic genus in the Cryptococcaceae to accommodate two Himalayan yeast isolates formerly identified as Rhodotorula glutinis. J Gen Appl Microbiol 33:75–85

    Google Scholar 

  • Groth C, Hansen J, Piskur J (1999) A natural chimeric yeast containing genetic material from three species. Int J Syst Bacteriol 49:1933–1938

    CAS  PubMed  Google Scholar 

  • Guetsky R, Shtienberg D, Elad Y, Fischer E, Dinoor A (2002) Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Phytopathology 92:976–985

    PubMed  Google Scholar 

  • Guilliermond A (1912) Les Levures. Encyclopédie scientifique. O Doin et Fils, Paris

    Google Scholar 

  • Hansen EB (2004) Microorganisms. In: Hui YH, Meunier-Goddik L, Hansen AS, Josephsen J, Nip W-K, Stanfield PS, Toldrá F (eds) Handbook of food and beverage fermentation technology. Marcel Dekker, New York, pp 9–22

    Google Scholar 

  • Hawksworth DL (2012) Managing and coping with name of pleomorphic fungi in a period of transition. IMA Fungus 3:15–24

    PubMed Central  PubMed  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lucking R, Thorsten Lumbsch H, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Koljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schussler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    PubMed  Google Scholar 

  • Holley RA, Allan-Wojtas P, Phipps-Todd BE (1984) Nematospora sinecauda sp. nov., a yeast pathogen of mustard seeds. Antonie Van Leeuwenhoek 50:305–320

    CAS  PubMed  Google Scholar 

  • Hughes SJ (1985) The term chlamydospore. In: Arai T, Kuga T, Terao K, Yamazaki M, Miyaji M, Unemoto T (eds) Filamentous microorganisms: biomedical aspects. Japan Scientific Societies Press, Tokyo, pp 1–20

    Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüssler A, Longcore JE, O'Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822

    CAS  PubMed  Google Scholar 

  • Janisiewicz WJ (1987) Postharvest biological control of blue mold on apples. Phytopathology 77:481–485

    Google Scholar 

  • Janisiewicz WJ, Tworkoski TJ, Kurtzman CP (2001) Biocontrol potential of Metschnikowia pulcherrima strains against blue mold of apple. Phytopathology 91:1098–1108

    CAS  PubMed  Google Scholar 

  • Jumpponen A, Johnson LC (2005) Can rDNA analyses of diverse fungal communities in soil and roots detect effects of environmental manipulations—a case study from tallgrass prairie. Mycologia 97:1177–1194

    CAS  PubMed  Google Scholar 

  • Karabulut OA, Tezcan H, Daus A, Cohen L, Wiess B, Droby S (2004) Control of preharvest and postharvest fruit rot in Strawberry by Metschnikowia fructicola. Biocontrol Sci Technol 14:513–521

    Google Scholar 

  • Kaur R, Domergue R, Zupancic ML, Cormack BP (2005) A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol 8:378–384

    CAS  PubMed  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth & Bisby’s dictionary of the fungi, 10th edn. CAB International, Wallingford

    Google Scholar 

  • Kirsop BE, Kurtzman CP (eds) (1988) Living resources for biotechnology. Yeasts. Cambridge University Press, Cambridge

    Google Scholar 

  • Knapp S, McNeill J, Turland NJ (2011) Changes to publication requirements made at the XVIII International Botanical Congress in Melbourne—what does e-publication mean for you? BMC Evol Biol 11:251–254

    Google Scholar 

  • Korf RP (1973) Discomycetes and Tuberales. In: Ainsworth GC, Sparrow FK, Sussman AS (eds) The Fungi, an advanced treatise, vol IV A. Academic, New York, pp 249–319

    Google Scholar 

  • Kramer CL (1960) Morphological development and nuclear behavior in the genus Taphrina. Mycologia 52:295–320

    Google Scholar 

  • Kramer CL (1973) Protomycetales and taphrinales. In: Ainsworth GC, Sparrow FK, Sussman AS (eds) The fungi—an advanced treatise, vol. IVA. Academic, New York, pp 33–41

    Google Scholar 

  • Kuramae EE, Robert V, Snel B, Weiss M, Boekhout T (2006) Phylogenomics reveal a robust fungal tree of life. FEMS Yeast Res 6:1213–1220

    CAS  PubMed  Google Scholar 

  • Kurtzman CP (1993) Systematics of the ascomycetous yeasts assessed from ribosomal RNA sequence divergence. Antonie Van Leeuwenhoek 63:165–174

    CAS  PubMed  Google Scholar 

  • Kurtzman CP (2003) Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces. Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res 4:233–245

    CAS  PubMed  Google Scholar 

  • Kurtzman CP (2011) Protomyces Unger (1833). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 725–731

    Google Scholar 

  • Kurtzman CP, Robnett CJ (1991) Phylogenetic relationships among species of Saccharomyces, Schizosaccharomyces, Debaryomyces and Schwanniomyces determined from partial ribosomal RNA sequences. Yeast 7:61–72

    CAS  PubMed  Google Scholar 

  • Kurtzman CP, Robnett CJ (1994) Orders and families of ascosporogenous yeasts and yeast-like taxa compared from ribosomal RNA sequence similarities. In: Hawksworth DL (ed) Ascomycete systematics: problems and perspectives in the nineties. Plenum, New York, pp 249–258

    Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371

    CAS  PubMed  Google Scholar 

  • Kurtzman CP, Robnett CJ (2003) Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res 3:417–432

    CAS  PubMed  Google Scholar 

  • Kurtzman CP, Robnett CJ (2007) Multigene phylogenetic analysis of the Trichomonascus, Wickerhamiella and Zygoascus yeast clades, and the proposal of Sugiyamaella gen.nov. and 14 new species combinations. FEMS Yeast Res 7:141–151

    CAS  PubMed  Google Scholar 

  • Kurtzman CP, Robnett CJ (2010) Systematics of methanol assimilating yeasts and neighboring taxa from multigene sequence analysis and the proposal of Peterozyma gen. nov., a new member of the Saccharomycetales. FEMS Yeast Res 10:353–361

    CAS  PubMed  Google Scholar 

  • Kurtzman CP, Robnett CJ (2012) Saitoella coloradoensis sp. nov., a new species of the Ascomycota, subphylum Taphrinomycotina. Antonie Van Leeuwenhoek 101:795–802

    CAS  PubMed  Google Scholar 

  • Kurtzman CP, Robnett CJ (2013) Relationships among genera of the Saccharomycotina (Ascomycota) from multigene phylogenetic analysis of type species. FEMS Yeast Res 13(1):23–33

    CAS  PubMed  Google Scholar 

  • Kurtzman CP, Sugiyama J (2001) Ascomycetous yeasts and yeastlike taxa. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The mycota, vol VII (Systematics and evolution), Part A. Springer, Berlin, pp 179–200

    Google Scholar 

  • Kurtzman CP, Suzuki M (2010) Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces and Scheffersomyces. Mycoscience 51:2–14

    CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ, Ward JN, Brayton C, Gorelick P, Walsh TJ (2005) Multigenic phylogenetic analysis of pathogenic Candida species in the Kazachstania (Arxiozyma) telluris complex and description of their ascosporic states as Kazachstania bovina sp. nov., K. heterogenica sp. nov., K. pintolopesii sp. nov. and K. slooffiae sp.nov. J Clin Microbiol 43:101–111

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kurtzman CP, Albertyn J, Basehoar-Powers E (2007) Multigene phylogenetic analysis of the Lipomycetaceae and proposed transfer of Zygozyma species to Lipomyces and Babjevia anomala to Dipodascopsis. FEMS Yeast Res 7:1027–1034

    CAS  PubMed  Google Scholar 

  • Kurtzman CP, Robnett CJ, Basehoar-Powers E (2008) Relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene phylogenetic analysis and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Res 8:939–954

    CAS  PubMed  Google Scholar 

  • Kurtzman CP, Price NP, Ray KJ, Kuo TM (2010) Production of sophorolipids biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade. FEMS Microbiol Lett 311:140–146

    CAS  PubMed  Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T, Robert V (2011) Methods for isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 87–110

    Google Scholar 

  • Lachance M-A, Daniel H-M, Meyer W, Prasad GS, Gautam SP, Boundy-Mills K (2003) The D1/D2 domain of the large-subunit rDNA of the yeast species Clavispora lusitaniae is unusually polymorphic. FEMS Yeast Res 4:253–258

    CAS  PubMed  Google Scholar 

  • Landvik S (1996) Neolecta, a fruit-body-producing genus of the basal ascomycetes, as shown by SSU and LSU rRNA sequences. Mycol Res 100:199–202

    CAS  Google Scholar 

  • Landvik S, Eriksson OE, Gargas A, Gustafsson P (1993) Relationships of the genus Neolecta (Neolectales ordo nov., Ascomycotina) inferred from 18S rDNA sequences. Syst Ascomyc 11:107–118

    Google Scholar 

  • Langeron M, Guerra P (1940) Valeur et nature des variations et dissociations de colonies chez les champignons levuriformes. Ann Parasitol Hum Comp 17:447–469

    CAS  Google Scholar 

  • Legras J-L, Medinoglu D, Cornuet J-M, Karst F (2007) Bread beer and wine: Saccharomyces diversity reflects human history. Mol Ecol 16:2091–2102

    CAS  PubMed  Google Scholar 

  • Liu Y, Leigh JW, Brinkmann H, Cushion MT (2009) Phylogenomic analyses support the monophyly of Taphrinomycotina, including Schizosaccharomyces fission yeasts. Mol Biol Evol 26:27–34

    PubMed  Google Scholar 

  • Martin EM (1940) The morphology and cytology of Taphrina deformans. Am J Bot 27:743–751

    Google Scholar 

  • Martini A, Phaff HJ (1973) The optical determination of DNA–DNA homologies in yeasts. Ann Microbiol 23:59–68

    Google Scholar 

  • McClary DO, Nulty WL, Miller GR (1959) Effect of potassium versus sodium in the sporulation of Saccharomyces. J Bacteriol 78:362–368

    PubMed Central  CAS  PubMed  Google Scholar 

  • McGovern PE, Zhang J, Tang J, Zhang Z, Hall GR, Moreau RA, Nuñez A, Dutyrm ED, Richards MP, Wang C-S, Cheng G, Zhao Z, Wang C (2004) Fermented beverages of pre-proto-historic China. Proc Natl Acad Sci U S A 101:17593–17598

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mikata K, Banno I (1989) Preservation of yeast cultures by L-drying: viability after 5 years of storage at 5 °C. Inst Ferment Osaka Res Commun 14:80–103

    Google Scholar 

  • Mix AJ (1949) A monograph of the genus Taphrina. Univ Kansas Sci Bull 23:1–167

    Google Scholar 

  • Moore RT (1987) Micromorphology of yeasts and yeast-like fungi and its taxonomic implications. In: de Hoog GS, Smith MT, Weijman ACM (eds) The expanding realm of yeast-like fungi. Elsevier, Amsterdam, pp 203–226

    Google Scholar 

  • Moore RT (1990) The genus Lalaria gen. nov.: Taphrinales anamorphosum. Mycotaxon 38:315–330

    Google Scholar 

  • Mortimer R, Polsinelli M (1999) On the origins of wine yeast. Res Microbiol 150:199–204

    CAS  PubMed  Google Scholar 

  • Mulvany JG (1969) Membrane filter techniques in microbiology. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 1. Academic, New York, pp 205–253

    Google Scholar 

  • Naehring J, Kiefer S, Wolf K (1995) Nucleotide sequence of the Schizosaccharomyces japonicus var. versatilis ribosomal RNA gene cluster and its phylogenetic implications. Curr Genet 28:353–359

    CAS  PubMed  Google Scholar 

  • Nakase T, Komagata K (1968) Taxonomic significance of base composition of yeast DNA. J Gen Appl Microbiol 14:345–357

    CAS  Google Scholar 

  • Nguyen NH, Suh SO, Marshall CJ, Blackwell M (2006) Morphological and ecological similarities: wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp. nov. and Candida jeffriesii sp. nov. Mycol Res 110:1232–1241

    PubMed  Google Scholar 

  • Nishida H, Sugiyama J (1993) Phylogenetic relationships among Taphrina, Saitoella, and other higher fungi. Mol Biol Evol 10:431–436

    CAS  PubMed  Google Scholar 

  • Nishida H, Sugiyama J (1994a) Phylogeny and molecular evolution among higher fungi. Nippon Nogeikagaku Kaishi 68:54–57 (in Japanese)

    CAS  Google Scholar 

  • Nishida H, Sugiyama J (1994b) Archiascomycetes: detection of a major new lineage within the Ascomycota. Mycoscience 35:361–366

    Google Scholar 

  • Nishida H, Sugiyama J (1995) A common group I intron between a plant parasitic fungus and its host. Mol Biol Evol 12:883–886

    CAS  PubMed  Google Scholar 

  • Nishida H, Blanz PA, Sugiyama J (1993) The higher fungus Protomyces inouyei has two group I introns in the 18S rRNA gene. J Mol Evol 37:25–28

    CAS  PubMed  Google Scholar 

  • Nishida H, Tajiri Y, Sugiyama J (1998) Multiple origins of fungal group I introns located in the same position of nuclear SSU rRNA gene. J Mol Evol 46:442–448

    CAS  PubMed  Google Scholar 

  • Nishida H, Ogura A, Yokota A, Yamaguchi I, Sugiyama J (2000) Group I intron located in PR protein homologue gene in Youngia japonica. Biosci Biotechnol Biochem 64:606–609

    CAS  PubMed  Google Scholar 

  • Norvell LL (2011) Melbourne approves a new Code. Mycotaxon 116:481–490

    Google Scholar 

  • Passoth V, Fredlund E, Druvefors UA, Schnurer J (2006) Biotechnology, physiology and genetics of the yeast Pichia anomala. FEMS Yeast Res 6:3–13

    CAS  PubMed  Google Scholar 

  • Peterson SW, Kurtzman CP (1991) Ribosomal RNA sequence divergence among sibling species of yeasts. Syst Appl Microbiol 14:124–129

    CAS  Google Scholar 

  • Phaff HJ, Miller MW, Shifrine M (1956) The taxonomy of yeasts isolated from Drosophila in the Yosemite region of California. Antonie Van Leeuwenhoek 22:145–161

    CAS  PubMed  Google Scholar 

  • Phaff HJ, Starmer WT, Tredick-Kline J (1987) Pichia kluyveri sensu lato—a proposal for two new varieties and a new anamorph. In: de Hoog GS, Smith MT, Weijman ACM (eds) The expanding realm of yeast-like fungi. Elsevier, Amsterdam, pp 403–414

    Google Scholar 

  • Pitt JI, Miller MW (1968) Sporulation in Candida pulcherrima, Candida reukaufii and Chlamydozyma species: their relationships with Metschnikowia. Mycologia 60:663–685

    Google Scholar 

  • Porter TM, Schadt CW, Rizvi L, Martin AP, Schmidt SK, Scott-Denton L, Vilgalys R, Moncalvo JM (2008) Widespread occurrence and phylogenetic placement of a soil clone group adds a prominent new branch to the fungal tree of life. Mol Phylogenet Evol 46:635–644

    CAS  PubMed  Google Scholar 

  • Price CW, Fuson GB, Phaff HJ (1978) Genome comparison in yeast systematics: delimitation of species within the genera Schwanniomyces, Saccharomyces, Debaryomyces and Pichia. Microbiol Rev 42:161–193

    PubMed Central  CAS  PubMed  Google Scholar 

  • Prillinger H, Dörfler C, Laaser G, Eckerlein B, Lehle L (1990) Ein Beitrag zur Systematik und Entwicklungsbiologie höherer Pilze: Hefe-Typen der Basidiomyceten. Teil I: Schizosaccharomycetales, Protomyces-Typ. Z Mykol 56:219–250

    Google Scholar 

  • Redhead SA (1977) The genus Neolecta (Neolectaceae fam. nov., Lecanolales, Ascomycetes) in Canada. Can J Bot 55:301–306

    Google Scholar 

  • Redhead SA, Malloch D (1977) The Endomycetaceae: new concepts, new taxa. Can J Bot 55:1701–1711

    Google Scholar 

  • Rosling A, Cox F, Cruz-Martinez K, Ihrmark K, Grelet GA, Lindahl BD, Menkis A, James TY (2011) Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. Science 333:876–879

    CAS  PubMed  Google Scholar 

  • Rubio-Texeira M (2006) Endless versatility in the biotechnological applications of Kluyveromyces LAC genes. Biotechnol Adv 24:210–223

    Google Scholar 

  • Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:1359–1361

    CAS  PubMed  Google Scholar 

  • Scheda R (1966) Merkmalsveränderungen bei Hefen der Gattung Saccharomyces. Monatsschr Brau 19:256–258

    Google Scholar 

  • Schoch CL, Sung G-H, López-Giráldez F, Townsend JP, Miadlikowska J, Hofstetter V, Robbertse B, Matheny PB, Kauff F, Wang Z, Gueidan C, Andrie RM, Trippe K, Ciufetti LM, Wynns A, Fraker E, Hodkinson BP, Bonito G, Yahr R, Groenewald JZ, Arzanlou M, de Hoog GS, Crous PW, Hewitt D, Pfister DH, Peterson K, Gryzenhout M, Wingfield MJ, Aptroot A, Suh S-O, Blackwell M, Hillis DM, Griffith GW, Castlebury LA, Rossman AY, Lumbsch HT, Lücking R, Büdel B, Rauhut A, Diederich P, Ertz D, Geiser DM, Hosaka K, Inderbitzin P, Kohlmeyer J, Volkmann-Kohlmeyer B, Mostert L, O’Donnell K, Sipman H, Rogers JD, Shoemaker RA, Sugiyama J, Summerbell RC, Untereiner W, Johnston P, Stenroos S, Zuccaro A, Dyer P, Crittenden P, Cole MS, Hansen K, Trappe JM, Lutzoni F, Spatafora JW (2009) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58:224–239

    CAS  PubMed  Google Scholar 

  • Sietsma JH, Wessels JGH (1990) Occurrence of glucosaminoglycan in the wall of Schizosaccharomyces pombe. J Gen Microbiol 136:2261–2265

    CAS  PubMed  Google Scholar 

  • Sjamsuridzal W, Tajiri Y, Nishida H, Thuan T, Kawasaki H, Hirata A, Yokota A, Sujiyama J (1997) Evolutionary relationships of members of the genera Taphrina, Protomyces, Schizosaccharomyces, and related taxa within the Archiascomycetes: integrated analysis of genotypic and phenotypic characters. Mycoscience 38:267–280

    Google Scholar 

  • Slininger PJ, Bolen PL, Kurtzman CP (1987) Pachysolen tannophilus properties and process considerations for ethanol production from D-xylose. Enzyme Microb Technol 9:5–15

    CAS  Google Scholar 

  • Staib F, Seibold M, Antweiler E, Frölich B (1989) Staib agar supplemented with a triple antibiotic combination for the detection of Cryptococcus neoformans in clinical specimens. Mycoses 32:448–452

    CAS  PubMed  Google Scholar 

  • Stalpers JA (1987) Pleomorphy in holobasidiomycetes. In: Sugiyama J (ed) Pleomorphic fungi: the diversity and its taxonomic implications. Kodansha, Tokyo, pp 201–220

    Google Scholar 

  • Starmer WT, Ganter PF, Aberdeen V (1992) Geographic distribution and genetics of killer phenotypes for the yeast Pichia kluyveri across the United States. Appl Environ Microbiol 58:990–997

    PubMed Central  CAS  PubMed  Google Scholar 

  • Streiblová E (1971) Cell division in yeasts. In: Pérez-Miravette A, Peláez D (eds) Recent advances in microbiology. Proc. 10th int congress on microbiology, Mexico City, Mexico, pp 131–140

    Google Scholar 

  • Sugiyama J (1998) Relatedness, phylogeny, and evolution of the fungi. Mycoscience 39:487–511

    Google Scholar 

  • Sugiyama J, Hamamoto M (2011) Saitoella S. Goto, Sugiyama, Hamamoto & Komagata (1987). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 1313–1315

    Google Scholar 

  • Sugiyama J, Nishida H (1995) The higher fungi: their evolutionary relationships and implications for fungal systematics. In: Arai R, Kato M, Doi Y (eds) Biodiversity and evolution. National Science Museum Foundation, Tokyo, pp 177–195

    Google Scholar 

  • Sugiyama J, Fukagawa M, Chiu S-W, Komagata K (1985) Cellular carbohydrate composition, DNA base composition, ubiquinone systems and diazonium blue B color test in the genera Rhodosporidium, Leucosporidium, Rhodotorula and related basidiomycetous yeasts. J Gen Appl Microbiol 31:519–550

    CAS  Google Scholar 

  • Sugiyama J, Hosaka K, Suh SO (2006) Early diverging Ascomycota: phylogenetic divergence and related evolutionary enigmas. Mycologia 98:996–1005

    PubMed  Google Scholar 

  • Sugiyama J, Nishida H, Suh S-O (1993) The paradigm of fungal diagnoses and descriptions in the era of molecular systematics: Saitoella complicata as an example. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford, pp 261–269

    Google Scholar 

  • Sullivan DJ, Moran GP, Coleman DC (2005) Candida dubliniensis: ten years on. FEMS Microbiol Lett 253:9–17

    CAS  PubMed  Google Scholar 

  • Syrop M, Beckett S (1976) Leaf curl disease of almond caused by Taphrina deformans. III. Ultrastructural cytology of the pathogen. Can J Bot 54:293–305

    Google Scholar 

  • Takano I, Oshima Y (1970) Mutational nature of an allele-specific conversion of the mating type by the homothallic gene HOα in Saccharomyces. Genetics 65:421–427

    PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor JW, Swann EC, Berbee ML (1994) Molecular evolution of ascomycete fungi: phylogeny and conflict. In: Hawksworth DL (ed) Ascomycete systematics: problems and perspectives in the nineties. Plenum, New York, pp 201–212

    Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32

    CAS  PubMed  Google Scholar 

  • Tomaszewski EK, Logan KS, Snowden KF, Kurtzman CP, Phalen DN (2003) Phylogenetic analysis identifies the ‘megabacterium’ of birds as a novel anamorphic ascomycetous yeast, Macrorhabdus ornithogaster gen. nov., sp. nov. Int J Syst Evol Microbiol 53:1201–1205

    CAS  PubMed  Google Scholar 

  • Tripathi AK, Chauhan RKS, Bartaria AM, Chauhan S (2003) Quantitative and qualitative loss in coriander due to Protomyces macrosporus. Indian Phytopathol 56:451–452

    Google Scholar 

  • Tubaki K (1957) Biological and cultural studies of three species of Protomyces. Mycologia 49:44–54

    Google Scholar 

  • Tubaki K (1978) Taphrina wiesneri (Rathay) Mix. In: Udagawa S, Tubaki K, Horie Y, Miura K, Minoura K, Yamazaki M, Yokoyama T, Watanabe S (eds) Kinruizukan (‘Compendium of Fungi’), part 1. Kodansha, Tokyo, pp 329–330 (in Japanese)

    Google Scholar 

  • Vandenkoornhuyse P, Baldauf SL, Leyval C, Straczek J, Young JPW (2002) Extensive fungal diversity in plant roots. Science 295:2051

    PubMed  Google Scholar 

  • van der Walt JP (1970) Criteria and methods used in classification. In: Lodder J (ed) The yeasts, a taxonomic study, 2nd edn. North-Holland, Amsterdam, pp 34–113

    Google Scholar 

  • van der Walt JP, Scott DB (1971) Saccharomycopsis synnaedendra, a new yeast from South African insect sources. Mycopathol Mycol Appl 44:101–106

    Google Scholar 

  • van der Walt JP, van Kerken AE (1961) The wine yeasts of the Cape. Part V. Studies on the occurrence of Brettanomyces intermedius and Brettanomyces schanderlii. Antonie Van Leeuwenhoek 27:81–90

    PubMed  Google Scholar 

  • van Dijken JP, Harder W (1974) Optimal conditions for the enrichment and isolation of methanol-assimilating yeasts. J Gen Microbiol 84:409–411

    PubMed  Google Scholar 

  • Vaughan-Martini A, Kurtzman CP (1985) Deoxyribonucleic acid relatedness among species of the genus Saccharomyces sensu stricto. Int J Syst Bacteriol 35:508–511

    Google Scholar 

  • Vaughan-Martini A, Martini A (2011) Schizosaccharomyces Lindner (1893). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 779–784

    Google Scholar 

  • Veenhuis M, van Dijken JP, Harder W (1983) The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts. Adv Microb Physiol 24:1–82

    CAS  PubMed  Google Scholar 

  • Vega FE, Blackwell M (2005) Insect–fungal associations: ecology and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Verstrepen KJ, Chambers PJ, Pretorius IS (2006) The development of superior yeast strains for the food and beverage industries: challenges, opportunities, and potential benefits. In: Querol A, Fleet GH (eds) Yeasts in foods and beverages. Springer, Berlin, pp 399–444

    Google Scholar 

  • von Arx JA, van der Walt JP (1987) Ophiostomatales and endomycetales. In: de Hoog GS, Smith MT, Weijman ACM (eds) The expanding realm of yeast-like fungi. Elsevier, Amsterdam, pp 167–176

    Google Scholar 

  • von Arx JA, Weijman ACM (1979) Conidiation and carbohydrate composition in some Candida and Torulopsis species. Antonie Van Leeuwenhoek 45:547–555

    Google Scholar 

  • Walker WF (1985) 5S ribosomal RNA sequences from ascomycetes and evolutionary implications. Syst Appl Microbiol 6:48–53

    CAS  Google Scholar 

  • Watanabe J, Hori H, Tanabe K, Nakamura Y (1989) Phylogenetic association of Pneumocystis carinii with the “Rhizopoda/Myxomycota/Zygomycota group” indicated by comparison of 5S ribosomal RNA sequences. Mol Biochem Parasitol 32:163–168

    CAS  PubMed  Google Scholar 

  • Wells JM (1977) Sour rot of peaches caused by Monilia implicata and Geotrichum candidum. Phytopathology 67:404–408

    CAS  Google Scholar 

  • Wickerham LJ (1951) Taxonomy of yeasts. Tech Bull 1029, U.S. Department of Agriculture, Washington, DC

    Google Scholar 

  • Wickerham LJ (1958) Sexual agglutination of heterothallic yeasts in diverse taxonomic areas. Science 128:1504–1505

    CAS  PubMed  Google Scholar 

  • Wickerham LJ (1969) New homothallic taxa of Hansenula. Mycopathol Mycol Appl 37:15–32

    Google Scholar 

  • Wickerham LJ, Burton KA (1954) A clarification of the relationships of Candida guilliermondii to other yeasts by a study of their mating types. J Bacteriol 68:594–597

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wickerham LJ, Flickinger MH, Johnston RM (1946) The production of riboflavin by Ashbya gossypii. Arch Biochem 9:95–98

    CAS  PubMed  Google Scholar 

  • Yamada Y, Banno I (1987) Hasegawaea gen. nov., an ascosporogenous yeast genus for the organism whose ascospores have smooth surfaces without papillae and which are characterised by the absence of coenzyme Q and by the presence of linoleic acid in cellular fatty acid composition. J Gen Appl Microbiol 33:295–298

    CAS  Google Scholar 

  • Yarrow D (1998) Methods for the isolation, maintenance and identification of yeasts. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study, 4th edn. Elsevier, Amsterdam, pp 77–100

    Google Scholar 

  • Yoshida Y (1989) Ultrastructural studies of Pneumocystis carinii. J Protozool 36:53–60

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cletus P. Kurtzman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kurtzman, C.P., Sugiyama, J. (2015). 1 Saccharomycotina and Taphrinomycotina: The Yeasts and Yeastlike Fungi of the Ascomycota. In: McLaughlin, D., Spatafora, J. (eds) Systematics and Evolution. The Mycota, vol 7B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46011-5_1

Download citation

Publish with us

Policies and ethics