Skip to main content

Birds

  • Chapter
  • First Online:
The Vertebrate Integument Volume 2
  • 975 Accesses

Abstract

Fossils from the Late Jurassic Solnhofen limestones in Bavaria are treasures in the collections of museums around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander RM (1968) Animal mechanics. University of Washington Press, Seattle

    Google Scholar 

  • Alexander RM (1992) Exploring biomechanics. Scientific American Library, New York

    Google Scholar 

  • Alexander DE (2002) Nature’s flyers: birds, insects, and the biomechanics of flight. John Hopkins University Press, Baltimore

    Google Scholar 

  • Alibardi L, Toni M (2008) Cytochemical and molecular characteristics of the process of cornification during feather morphogenesis. Prog Histochem Cytochem 43:1–69

    CAS  PubMed  Google Scholar 

  • Altshuler DL, Dudley R (2002) The ecological and evolutionary interface of hummingbird flight physiology. J Exp Biol 205:2325–2336

    PubMed  Google Scholar 

  • Ashby MF, Gibson LJ, Wegst U, Olive R (1995) The mechanical properties of natural materials. Proc Math Phys Sci 450(1938):123–140

    Google Scholar 

  • Astbury WT, Marwick TC (1932) X-ray interpretation of the molecular structure of feather keratin. Nature (Lond) 130:309–310

    CAS  Google Scholar 

  • Azuma A (2006) The biokinetics of flying and swimming, 2nd edn. American Institute of Aeronautics and Astronautics Inc., Blacksburg

    Google Scholar 

  • Bachmann T, Klän S, Baumgartner W, Klaas M, Schröder W, Wagner H (2007) Morphometric characterisation of wing feathers of the barn owl Tyto alba pratincola and the pigeon Columba livia. Front Zool 4:23. doi:10.1186/1742-9994-4-23

    PubMed Central  PubMed  Google Scholar 

  • Bakker RT (1986) The dinosaur heresies: new theories unlocking the mystery of the dinosaurs and their extinction. William Morrow, New York

    Google Scholar 

  • Biewener AA (2011) Muscle function in avian flight: achieving power and control. Phil Trans R Soc B 366:1496–1506. doi:10.1098/rstb.2010.0353

  • Bock W (2013) The furcula and the evolution of avian flight. Paleontol J 47:1236–1244

    Google Scholar 

  • Bodde SG, Meyers MA, McKittrick J (2011) Correlation of the mechanical and structural properties of cortical rachis keratin of the retrices of the Toco Toucan (Ramphastos toco). J Mech Behav Biomed Mater. doi:10.1016/j.jmbbm.2011.01.010

    PubMed  Google Scholar 

  • Bonser RHC (2001) The mechanical performance of medulloid foam from feathers. J Mater Sci Lett 20:941–942

    CAS  Google Scholar 

  • Bonser RHC, Purslow PP (1995) The Young’s modulus of feather keratin. J Exp Biol 198:1029–1033

    CAS  PubMed  Google Scholar 

  • Chandler AC (1916) A study of the structure of feathers with reference to their taxonomic significance. Univ Calif Publ Zool 13:243–446

    Google Scholar 

  • Chiappe LM (2007) Glorified dinosaurs: the origin and early evolution of birds. Wiley, Hoboken

    Google Scholar 

  • Chen P-J, Dong ZM, Zheng SN (1998) An exceptionally well preserved theropod dinosaur from the Yixian Formation of China. Nature 391:147–152

    Google Scholar 

  • Chklovski T (2014) Pointed-tip wings at low Reynolds numbers, University of Southern California, USA. www.scf.usc.edu/∼tchklovs. Accessed May 2014

  • Cieslak M, Dul B (2006) Feathers. Identification for bird conservation. Natura Publishing House, EU

    Google Scholar 

  • Clark CJ (2009) Courtship dives of Anna’s hummingbird offer insights into flight performance limits. Proc B. doi:10.1098/rspb.2009.0508

    Google Scholar 

  • Corning WR, Biewener AA (1998) In vivo strains in pigeon flight feather shafts: implications for structural design. J Exp Biol 201:3057–3065

    PubMed  Google Scholar 

  • Czerkas SA, Feduccia A (2014) Jurassic archosaur is a non-dinosaurian bird. J Ornithol 155:841–851. doi:10.1007/s10336-014-1098-9

  • Dawkins R (2008) Oxford book of modern science writing. Oxford University Press, Oxford

    Google Scholar 

  • Dawson MA, Gibson LJ (2006) Biomimetics: extending nature’s design of thin wall shells with cellular cores. Press WIT transactions on ecology and the environment. WIT Press, Boston, p 87

    Google Scholar 

  • Dobzhansky T (1962) Mankind evolving. Yale University Press, New Haven

    Google Scholar 

  • Duriez O, Kato A, Tromp C, Dell’Omo G, Vyssotski AL et al (2014) How cheap is soaring flight in raptors? A preliminary investigation in freely-flying vultures. PLoS ONE 9(1):e84887. doi:10.1371/journal.pone.0084887

    PubMed Central  PubMed  Google Scholar 

  • Elżanowski A (2002) Above the heads of dinosaurs. In: Chiappe LM, Witmer LM (eds) Mesozoic birds. University of California Press, Berkeley, pp 129–159

    Google Scholar 

  • Emery NJ (2006) Cognitive ornithology: the evolution of avian intelligence. Phil Trans R Soc B 361:23–43. doi:10.1098/rstb.2005.1736

    PubMed Central  PubMed  Google Scholar 

  • Ennos AR, Hickson JRE, Roberts A (1995) Functional morphology of the vanes of the flight feathers of the pigeon Columba livia. J Exp Biol 198:1219–1228

    PubMed  Google Scholar 

  • Ennos AR, van Casteren A (2010) Transverse stresses and modes of failure in tree branches and other beams. Proc R Soc B 277:1253–1258. doi:10.1098/rspb.2009.2093

    PubMed Central  CAS  PubMed  Google Scholar 

  • Erb RM, Libanori R, Rothfuchs N, Studart AR (2012) Composites reinforced in three dimensions by using low magnetic fields. Science 335:199

    CAS  PubMed  Google Scholar 

  • Feduccia A (1993) Evidence from the claw geometry of indicating arboreal habits of Archaeopteryx. Science 259:790–793

    CAS  PubMed  Google Scholar 

  • Feduccia A (1997) The origin and evolution of birds, 2nd edn. Yale University Press, New Haven

    Google Scholar 

  • Feduccia A (2012) Riddle of the feathered dragons: hidden birds of china. Yale University Press, New Haven

    Google Scholar 

  • Feduccia A, Tordoff HB (1979) Feathers of archaeopteryx: asymmetric vanes indicate aerodynamic function. Science 203:1021–1022

    CAS  PubMed  Google Scholar 

  • Feduccia A, Lingham-Soliar T, Hinchliffe JR (2005) Do feathered dinosaurs exist? Testing the hypothesis on neontological and paleontological evidence. J Morphol 266:125–166

    Google Scholar 

  • Filshie BK, Rogers GE (1962) An electron microscope study of the fine structure of feather keratin. J Cell Biol 13(1):1–12

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fortey R (2011) Archives of life: science and collections. In: Bryson B (ed) Seeing further. The story of the Royal Society. Harper Press, London, pp 184–201

    Google Scholar 

  • Foth C, Tischlinger H, Rauhut OWM (2014) New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers. Nature 511:79–82

    CAS  PubMed  Google Scholar 

  • Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface. doi:10.1098/rsif.2012.0341

    Google Scholar 

  • Gibson LJ, Ashby MF (1999) Cellular solids, structure and properties, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Goodfellow B (2004) Design and application of a fiber pullout test for examining controlled interfaces in fiber reinforced polymers. In: NNIN REU research accomplishments, pp 62–63

    Google Scholar 

  • Gordon JE (1978) Structures. Penguin, Harmondsworth

    Google Scholar 

  • Greenwalt CH (1960) Hummingbirds. Doubleday and Co, New York

    Google Scholar 

  • Fraser RDB, Parry DAD (2008) Molecular packing in the feather keratin filament. J Struct Biol 162:1–13. doi:10.1016/j.jsb.2008.01.011

    CAS  PubMed  Google Scholar 

  • Fraser RDB, Parry DAD (2011) The structural basis of the filament-matrix texture in the avian/reptilian group of hard b-keratins. J Struct Biol 173:391–405

    CAS  PubMed  Google Scholar 

  • Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52:1263–1334

    CAS  Google Scholar 

  • Gill FB (1995) Ornithology, 2nd edn. WH Freeman and Company, New York

    Google Scholar 

  • Greenwold MJ, Sawyer RH (2011) Linking the molecular evolution of avian beta (b) keratins to the evolution of feathers. Exp Zool (Mol Dev Evol) 316:609–616

    CAS  Google Scholar 

  • Hedenström A (2009) Mechanics of bird flight: the power curve of a pigeon by C. J. Pennycuick. JEB Class 1421:1–2

    Google Scholar 

  • Hemelrijk CK, Hildenbrandt H (2011) Some causes of the variable shape of flocks of birds. PLoS ONE 6(8):e22479. doi:10.1371/journal.pone.0022479

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hedrick T, Tobalske BW, Biewener AA (2002) Estimates of circulation and gait change based on a three-dimensional kinematic analysis of flight in cockatiels (Nymphicus hollandicus) and ringed turtle doves (Streptopelia risoria). J Exp Biol 205:1389–1409

    PubMed  Google Scholar 

  • Homberger DG, de Silva KN (2000) Functional microanatomy of the feather-bearing integument: implications for the evolution of birds and avian flight. Am Zool 40:553–574

    Google Scholar 

  • Jarvis ED (2009) Bird brain: evolution. In: Squire LR (ed) Encyclopedia of neuroscience, vol 2. Academic Press, Oxford, pp 209–215

    Google Scholar 

  • Jenkins FA (1993) The evolution of the avian shoulder joint. Amer J Sci 293:253–267

    Google Scholar 

  • Katti KS, Katti DR (2006) Why is nacre so tough and strong? Mater Sci Eng C 26:1317–1324

    CAS  Google Scholar 

  • Karam GN, Gibson LJ (1995) Elastic buckling of cylindrical shells with elastic cores (i. analysis). Int J Solids Struct 32:1259–1283

    Google Scholar 

  • Lakes RS, Swan C, Garner E, Lee T, Stewart K (1999) Synthesis in bio-solid mechanics. In: Pedersen P, Bendsøe M (eds) IUTAM, solid mechanics and its applications, vol 69. Kluwer, Dordrecht, pp 1–10

    Google Scholar 

  • Lingham-Soliar T (2005a) Dorsal fin in the white shark, Carcharodon carcharias: a dynamic stabilizer for fast swimming. J Morphol 263:1–11

    PubMed  Google Scholar 

  • Lingham-Soliar T (2005b) Caudal fin in the white shark, Carcharodon carcharias (Lamnidae): a dynamic propeller for fast, efficient swimming. J Morphol 264:233–252. doi:10.1002/jmor.10328

    PubMed  Google Scholar 

  • Lingham-Soliar T (2014a) Feather structure, biomechanics and biomimetics: the incredible lightness of being. J Ornithol 155:323–336. doi:10.1007/s10336-013-1038-0

    Google Scholar 

  • Lingham-Soliar T (2014b) Response to comments by C. Palmer on my paper, Feather structure, biomechanics and biomimetics: the incredible lightness of being. J Ornithol. doi:10.1007/s10336-014-1093-1

    Google Scholar 

  • Lingham-Soliar T, Bonser RHC, Wesley-Smith J (2010) Selective biodegradation of keratin matrix in feather rachis reveals classic bioengineering. Proc Roy Soc Lond B 277:1161–1168. doi:10.1098/rspb.2009.1980

    Google Scholar 

  • Lingham-Soliar T, Murugan N (2013) A new helical crossed-fiber structure of β-keratin in flight feathers and its biomechanical implications. PloS ONE 8(6):1–12. e65849

    Google Scholar 

  • Lucas AM, Stettenheim PR (1972) Avian anatomy—the integument, vols 1, 2. US Government Printing Office, Washington, DC

    Google Scholar 

  • Maderson PFA (1972) On how an archosaurian scale might have given rise to an avian feather. Am Nat 176:424–428

    Google Scholar 

  • Maderson PFA, Hillenius WJ, Hiller U, Dove CC (2009) Towards a comprehensive model of feather regeneration. J Morphol. doi:10.1002/jmor.10747

    PubMed  Google Scholar 

  • Marey É-J (1894) Des mouvements que certains animaux exécutent pour retomber sur leurs pieds, lorsqu’ils sont précipités d’un lieu élevé. La Nature 1119

    Google Scholar 

  • Maynard SJ (1952) The importance of the nervous system in the evolution of animal flight. Evolution 6:127–129

    Google Scholar 

  • Mayr G, Pohl B, Peters DS (2005) A well-preserved Archaeopteryx specimen with theropod features. Science 310:1483–1486

    CAS  PubMed  Google Scholar 

  • McKinnon AJ (2006) The self-assembly of keratin intermediate filaments into macrofibrils: is this process mediated by a mesophase? Curr Appl Phys 6:375–378

    Google Scholar 

  • Meyers MA, Lin AYM, Seki Y, Chen P-Y, Kad BK et al (2006) Structural biological composites: an overview. JOM:36–43

    Google Scholar 

  • Meyers MA, McKittrick J, Chen P-U (2013) Structural biological materials: critical mechanics-materials connections. Science 339:773. doi:10.1126/science.1220854

    CAS  PubMed  Google Scholar 

  • Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO (2008) Tough bio-inspired. Hybrid Mater Sci 322:1516

    CAS  Google Scholar 

  • Muijres FT, Melissa S, Bowlin L, Johansson C, Hedenström (2012) A Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers. J R Soc Interface 9:292–303

    PubMed Central  PubMed  Google Scholar 

  • Naraghi M, Filleter T, Moravsky A, Locascio M, Loutfy RO, Espinosa HD (2010) A multiscale study of high performance double-walled nanotube—polymer fibers. ACS Nano 2010:101026144939060. doi:10.1021/nn101404u

    Google Scholar 

  • Norberg UM (1990) Vertebrate flight. Springer, Berlin

    Google Scholar 

  • Norberg UM (1985) Evolution of vertebrate flight: an aerodynamic model for the transition from gliding to active flight. Am Nat 126:303–327

    Google Scholar 

  • Norberg RA (1985) Function of vane asymmetry and shaft curvature in bird flight feathers: inference on flight ability of Archaeopteryx. In: Hecht MK, Ostrom JH, Viohl G, Wellnhofer P (eds) The beginnings of birds. Freunde des Jura-Museums, Eichstatt, pp 303–318

    Google Scholar 

  • Norberg RA (1995) Feather asymmetry in Archaeopteryx. Nature 374:221

    CAS  Google Scholar 

  • Nudds RL, Dyke GJ (2010a) Narrow primary feather rachises in Confuciusornis and Archaeopteryx suggest poor flight ability. Science 328:887. doi:10.1126/science.1188895

  • Nudds RL, Dyke GJ (2010b) Response to comments on narrow primary feather rachises in Confuciusornis and Archaeopteryx suggest poor flight ability. Science 330:320. doi:10.1126/science.1193474

  • Olson SL, Feduccia A (1979) Flight capability and the pectoral girdle of Archaeopteryx. Nature 278:247–248

    Google Scholar 

  • Ostrom JH (1973) The ancestry of birds. Nature 242:136

    Google Scholar 

  • Ostrom JH (1974) Archaeopteryx and the origin of flight. Q Rev Biol 49:27–47

    Google Scholar 

  • Ostrom JH (1979) Bird flight: how did it begin? Am Sci 67:46–56

    CAS  PubMed  Google Scholar 

  • Pabst A (1996) Springs in swimming animals. Am Zool 36:723–735. doi:10.1093/icb/36.6.723

    Google Scholar 

  • Padian K (1985) The origins and aerodynamics of flight in extinct vertebrates. Palaeontology 28:413–433

    Google Scholar 

  • Padian K (2001) Stages in the origin of bird flight: beyond the arboreal-cursorial dichotomy. In: Gauthier J, Gall LF (eds) Perspectives on the origin and evolution of birds. Yale University Press, New Haven, pp 255–272

    Google Scholar 

  • Palmer C (2014) Response to Lingham-Soliar: feather structure, biomechanics and biomimetics: the incredible lightness of being. J Ornithol. doi:10.1007/s10336-014-1090-4

    Google Scholar 

  • Paul GS (2010) Comment on narrow primary feather rachises in Confuciusornis and Archaeopteryx suggest poor flight ability. science 330:320. doi:10.1126/science.1192963

  • Pennycuick CJ (1968a) A wind-tunnel study of gliding flight in the pigeon Columba Livia. J Exp Biol 49:509–526

    Google Scholar 

  • Pennycuick CJ (1968b) Power requirements for horizontal flight in the pigeon Columba livia. J Exp Biol 49:527–555

    Google Scholar 

  • Pennycuick CJ (1972) Animal flight. Edward Arnold, London

    Google Scholar 

  • Pennycuick CJ (1982) The flight of petrels and Albatrosses (Procellariiformes), observed in South Georgia and its vicinity. Phil Trans R Soc Lond B 300:75–106

    Google Scholar 

  • Pennycuick CJ (1983) Thermal soaring compared in three dissimilar tropical bird species, Fregata Magnificens, Pelecanus Occidentalis and Coragyps Atratus. J Exp Biol 102:307–325

    Google Scholar 

  • Pennycuick CJ (1987) Flight of seabirds. Seabirds: feeding biology and role in marine ecosystems, Cambridge University Press, Cambridge, pp 43–62

    Google Scholar 

  • Pennycuick CJ (2002) Gust soaring as a basis for the flight of petrels and albatrosses (Procellariiformes). Avian Sci 2:1–12. ISSN 1424-8743

    Google Scholar 

  • Pennycuick CJ (2008) Modelling the flying bird. Academic Press, Amsterdam

    Google Scholar 

  • Portugal SJ, Hubel TY, Fritz J, Heese S, Trobe D et al (2014) Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight. Nature 505:399. doi:10.1038/nature12939

    CAS  PubMed  Google Scholar 

  • Proctor NS, Lynch PJ (1993) Manual of ornithology: avian structure and function. Yale University Press, New Haven

    Google Scholar 

  • Prum RO, Brush AH (2002) The evolution and diversification of feathers. Q Rev Biol 77:261–295

    Google Scholar 

  • Prum RO, Brush AH (2003) Which came first, the feather or the bird? Sci Am 84–93

    Google Scholar 

  • Purslow PP, Vincent JFV (1978) Mechanical properties of primary feathers from the pigeon. J Exp Biol 72:251–260

    Google Scholar 

  • Rayner JMV (1979a) A vortex theory of animal flight. II. The forward flight of birds. J Fluid Mech 91:731–763

    Google Scholar 

  • Rayner JMV (1979b) A new approach to animal flight mechanics. J Exp Biol 80:17–54

    Google Scholar 

  • Rayner JMV (1993) On aerodynamics and the energetics of vertebrate flapping flight. Contemp Math 141:351–400

    Google Scholar 

  • Rayner JMV Gordon R (1997) Visualisation and modelling of the wakes of flying birds. Int Cong Locomotion Syst

    Google Scholar 

  • Rayner JMV, Ward S (1999) On the power curves of flying birds. Int Ornithol Cong

    Google Scholar 

  • Rayner JMV, Viscardi PW, Ward S, Speakman JR (2001) Aerodynamics and energetics of intermittent flight in birds. Am Zool 41:188–204

    Google Scholar 

  • Reisdorf AG, Wuttke M (2012) Re-evaluating Moodie’s opisthotonic posture hypothesis in fossil vertebrates part I: reptiles—the taphonomy of the bipedal dinosaurs Compsognathus longipes and Juravenator starki from the Solnhofen archipelago (Jurassic, Germany). Palaeobiol Palaeoenviron 92:119–168. doi:10.1007/s12549-011-0068-y

    Google Scholar 

  • Robertson G (2002) Birds of a feather stick: microscopic feather residues on stone artefacts from deep creek shelter, New South Wales. Tempus 7:175–182

    Google Scholar 

  • Rudall KM (1947) X-ray studies of the distribution of protein chain types in the vertebrate epidermis. Biochim Biophys Acta 1:549–562

    CAS  Google Scholar 

  • Sachs G, Traugott J, Nesterova AP, Dell’Omo G, Kümmeth F (2012) Flying at no mechanical energy cost: disclosing the secret of wandering albatrosses. PLoS ONE 7(9):e41449. doi:10.1371/journal.pone.0041449

    PubMed Central  CAS  PubMed  Google Scholar 

  • Santos PMD, Julio ENBS, Silva VD (2007) Correlation between concrete-to-concrete bond strength and the roughness of the substrate surface. Constr Build Mater 21:1688–1695

    Google Scholar 

  • Sawyer RH, Knapp LW (2003) Avian skin development and the evolutionary origin of feathers. J Exp Zool (Mol Dev Evol) 298B:57–72

    Google Scholar 

  • Sapir N, Dudley R (2012) Backward flight in hummingbirds employs unique kinematic adjustments and entails low metabolic cost. J Exp Biol 215:3603–3611

    PubMed  Google Scholar 

  • Sinclair I, Hockey P (2005) Birds of Southern Africa. Struick Publishers, Cape Town

    Google Scholar 

  • Song F, Bai Y (2001) Analysis of the strengthening and toughening of a biomaterial interface science in China series. Mathematics 44(12):1596–1601. doi:10.1007/BF02880799

  • Spedding GR (1986) The wake of a jackdaw (Corvus monedula) in slow flight. J Exp Biol 125:287–307

    Google Scholar 

  • Spedding GR (1987) The wake of a kestrel (Falco tinnunculus) in gliding flight. J Exp Biol 127:45–57

    Google Scholar 

  • Spedding GR, Rayner JMV, Pennycuick CJ (1984) Momentum and energy in the wake of a pigeon (Columba livia) in slow flight. J Exp Biol I 1(1):81–102

    Google Scholar 

  • Spedding GR (1992) The aerodynamics of flight. Mechanics of animal locomotion. In: Alexander R McN (ed) Springer, Berlin, pp 51–111

    Google Scholar 

  • Stettenheim PR (2000) The integumentary morphology of modern birds–an overview. Am Zool 40:461–477

    Google Scholar 

  • Sullivan C, Wang Y, Hone DWE, Wang Y, Xu X, Zhang F (2014) The vertebrates of the Jurassic Daohugou Biota of northeastern China. J Vertebr Paleontol 34(2):243–280. doi:10.1080/02724634.2013.787316

  • Swartz SM, Iriarte-Díaz J, Riskin DK, Breuer KS (2012) A bird? A plane? No, it’s a bat: an introduction to the biomechanics of bat flight. In: Gunnell GF, Simmons NB (eds) Evolutionary history of bats: fossils, molecules and morphology. Cambridge University Press, Cambridge, pp 317–352

    Google Scholar 

  • Tobalske B, Hearn J, Warrick D (2009) Aerodynamics of intermittent bounds in flying birds. Exp Fluids 46:963–973. doi:10.1007/s00348-009-0614-9

    Google Scholar 

  • Speakman JR, Thomson SC (1994) Flight capabilities of Archaeopteryx. Nature 370:514

    Google Scholar 

  • Tucker VA (1968) Respiratory exchange and evaporative water loss in the flying budgerigar. J Exp Biol 48:67–87

    Google Scholar 

  • Tucker VA (1993) Gliding birds: reduction of induced drag by wing tip slots between the primary feathers. J Exp Biol 180:285–310

    Google Scholar 

  • Vincent JFV, Owers P (1986) Mechanical design of hedgehog spines and porcupine quills. J Zool Lond (A) 210:55–75

    Google Scholar 

  • von Nopcsa F (1907) Ideas on the origin of flight. Proc Zool Soc London 1907:223–236

    Google Scholar 

  • von Nopcsa F (1923) On the origin of flight in birds. Proc Zool Soc London 1923:463–477

    Google Scholar 

  • Wainwright SA, Biggs WD, Currey JD, Gosline JM (1976) Mechanical design in organisms. Edward Arnold, London

    Google Scholar 

  • Wainwright SA, Vosburgh F, Hebrank JH (1978) Shark skin: function in locomotion. Science 202:747–749

    CAS  PubMed  Google Scholar 

  • Warham J (1977) Wing loadings, wing shapes and flight capabilities of Procellariiformes. N Z J Zool 4:73–83

    Google Scholar 

  • Wegst UGK, Ashby M (2004) The mechanical efficiency of natural materials. Philos Mag 84:2167–2181

    CAS  Google Scholar 

  • Weiss IM, Kirchner HOK (2010) The peacock’s train (Pavo cristatus and Pavo cristatus mut. alba) I. Structure, mechanics, and chemistry of the tail feather coverts. J Exp Zool 313A:690–703

    Google Scholar 

  • Warrick DR, Tobalske BW, Powers DR (2005) Aerodynamics of the hovering hummingbird. Nature 435:1094–1097. doi:10.1038/nature03647

    CAS  PubMed  Google Scholar 

  • Warrick DR, Tobalske BW, Powers DR (2009) Lift production in the hovering hummingbird. Proc R Soc B 276:3747–3752. doi:10.1098/rspb.2009.100

  • Weis-Fogh T (1973) Quick estimate of flight fitness in hovering animals including novel mechanisms for lift production. J Exp Biol 59:169–230

    Google Scholar 

  • Whiting R (2005) The art of Leonardo Da Vinci. Quantum Publishing Ltd., London

    Google Scholar 

  • Xu X, Zhou Z, Prum RO (2001) Branched integumental structures in Sinornithosaurus and the origin of birds. Nature 410:200–204

    Google Scholar 

  • Yalden DW (1985) Forelimb function in Archaeopteryx. In: Hecht MK, Ostrom JH, Viohl G, Wellnhofer P (eds) The beginnings of birds. Freunde des Jura-Museums, Eichstatt, pp 91–98

    Google Scholar 

  • Yalden DW (1997) Climbing Archaeopteryx. Archaeopteryx 15:107–108

    Google Scholar 

  • Zhang F, Zhou Z (2000) A primitive Enantiornithine bird and the origin of feathers. Science 290:1955–1959

    CAS  PubMed  Google Scholar 

  • Zheng X, Xu X, Zhou Z, Miao D, Zhang F (2010) Comment on narrow primary feather rachises in Confuciusornis and Archaeopteryx suggest poor flight ability. Science 330:320

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theagarten Lingham-Soliar .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lingham-Soliar, T. (2015). Birds. In: The Vertebrate Integument Volume 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46005-4_5

Download citation

Publish with us

Policies and ethics