Skip to main content

Swimming and Flying in Vertebrates

  • Chapter
  • First Online:
The Vertebrate Integument Volume 2
  • 867 Accesses

Abstract

Natural selection over millions of years has ensured that the mechanical systems evolved in swimming and flying vertebrates are highly efficient with regard to the habitat and mode of life for each species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander RMcN (1992) Exploring biomechanics. Scientific American Library, New York

    Google Scholar 

  • Alexander DE (2002) Nature’s flyers: birds, insects, and the biomechanics of flight. John Hopkins University Press, Baltimore and London

    Google Scholar 

  • Alexander RMcN (1965) The lift produced by the heterocercal tail of Selachii. J Exp Biol 43:131–138

    Google Scholar 

  • Au D, Weihs D (1980) At high speeds dolphins save energy by leaping. Nature 284:548–550

    Article  Google Scholar 

  • Azuma A (2006) The biokinetics of flying and swimming, 2nd edn. American Institute of Aeronautics and Astronautics Inc, Blacksburg

    Book  Google Scholar 

  • Bai C, Wu Z (2013) Generalized Kutta-Joukowski theorem for multi-vortex and multi-airfoil flow (a lumped vortex model). Chin J Aeronaut 27:34–39. http://dx.doi.org/10.1016/j.cja.2013.07.022

  • Bar-Meir G (2013) Basics of fluid mechanics. www.potto.org/downloads.php

  • Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Bergmann M, Cordier L, Brancher J-P (2005) Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced order model. Phys Fluids 17:097101–097121

    Google Scholar 

  • Braun J, Reif W-E (1985) Aquatic locomotion in fishes and tetrapods. N Jb Abh 169:307–322

    Google Scholar 

  • Cheng J-Y, Chahine GL (2001) Computational hydrodynamics of animal swimming: boundary element method and three-dimensional vortex wake structure. Comp Biochem Physiol A 131:51

    Article  CAS  Google Scholar 

  • Clark RB, Cowey JB (1958) Factors controlling the change of shape of certain nemertean and turbellarian worms. J Exp Biol 35:731–748

    Google Scholar 

  • Daniel T, Jordan C, Grunbaum D (1990) Hydromechanics of Swimming. In: Alexander RMcN (ed) Mechanics of animal locomotion. Springer, Berlin, pp 17–49

    Google Scholar 

  • Douglas RA (1963) Introduction to solid mechanics. Wadsworth, Belmont

    Google Scholar 

  • Feingold M (2004) The Newtonian moment, Isaac Newton and the making of modern culture. Oxford University Press, Oxford

    Google Scholar 

  • Froese R, Pauly D (2002) Fishbase. World wide web electronic publication. http://www.fishbase.org. Accessed 13 Oct 2002

  • Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface. doi:10.1098/rsif.2012.0341

  • Gordon JE (1978) Structures. Penguin, Harmondsworth

    Google Scholar 

  • Gray T (1933) Studies in animal locomotion. I. The movement of fish with special reference to the eel. J Exp Biol 10:88–104

    Google Scholar 

  • Gray T (1936) Studies in animal locomotion. VI. The propulsive powers of the dolphin. J Exp Biol 13:192–199

    Google Scholar 

  • Hewitt GF, Vassilicos JC (eds) (2005) Prediction of turbulent flows. Cambridge University Press, Cambridge

    Google Scholar 

  • Hoerner SF (1965) Fluid-dynamic drag. Bricktown, New Jersey

    Google Scholar 

  • Lauder GV (2000) Function of the caudal fin during locomotion in fishes: kinematics, flow visualization and evolutionary patterns. Amer Zool 40:101–122

    Article  Google Scholar 

  • Linden PF, Turner JS (2004) ‘Optimal’ vortex rings and aquatic propulsion mechanisms. Proc R Soc Lond B Biol Sci 271:647

    Article  CAS  Google Scholar 

  • Lindsey CC (1978) “Form, function and locomotory habits in fish,” In: Hoar WS, Randall DJ (eds) Fish Physiology, vol. VII Locomotion, Academic Press, New York, pp 1–100

    Google Scholar 

  • Lingham-Soliar T (2005a) Dorsal fin in the white shark, Carcharodon carcharias: a dynamic stabilizer for fast swimming. J Morphol 263:1–11

    Article  PubMed  Google Scholar 

  • Lingham-Soliar T (2005b) Caudal fin in the white shark, Carcharodon carcharias (Lamnidae): a dynamic propeller for fast, efficient swimming. J Morphol 264:233–252. doi:10.1002/jmor.10328

    Article  PubMed  Google Scholar 

  • Lingham-Soliar T (2005c) Caudal fin allometry in the white shark Carcharodon carcharias: implications for locomotory performance and ecology. Naturwissenschaften 92:231–236

    Article  CAS  PubMed  Google Scholar 

  • Lingham-Soliar T (2014a) The Vertebrate Integument. Origin and Evolution, Vol 1. Springer, Heidelberg

    Google Scholar 

  • Lingham-Soliar T (2014b) Feather structure, biomechanics and biomimetics: the incredible lightness of being. J Ornithol 155:323–336

    Article  Google Scholar 

  • Lingham-Soliar T, Murugan N (2013) A new helical crossed-fiber structure of β-keratin in flight feathers and its biomechanical implications. PloS ONE 8(6):1–12.

    Google Scholar 

  • Lingham-Soliar T, Bonser RHC, Wesley-Smith J (2010) Selective biodegradation of keratin matrix in feather rachis reveals classic bioengineering. Proc Roy Soc Lond B 277:1161–1168. doi:10.1098/rspb.2009.1980

  • Lissaman PBS (1983) Low-Reynolds-number airfoils. Annu Rev Fluid Mech 15:223–239

    Article  Google Scholar 

  • McDonough JM (2009) Lectures in elementary fluid dynamics: physics, mathematics and applications (Lecture notes). Online

    Google Scholar 

  • Meyers MA, McKittrick J, Chen P-U (2013) Structural biological materials: critical mechanics-materials connections. Science 339:773. doi:10.1126/science.1220854

    Article  CAS  PubMed  Google Scholar 

  • Moin P, Bewley T (1994) Feedback control of turbulence. Appl Mech Rev (part 2) 47:3–13

    Google Scholar 

  • Moin P, Kim J (1997) Tackling turbulence with supercomputers. Am Sci 276(1):46–52

    Article  Google Scholar 

  • Nauen JC, Lauder GV (2002) Hydrodynamics of caudal fin locomotion by chub mackerel, Scomber japonicus (Scombridae). J Exp Biol 205:1709–1724

    PubMed  Google Scholar 

  • Newton IS (1687) Philosophiae naturalis principia mathematica. Josephi Streater, London

    Google Scholar 

  • Norberg UM (1990) Vertebrate flight. Springer, Berlin

    Book  Google Scholar 

  • Pabst DA (1996) Morphology of the subdermal connective sheath of dolphins: a new fiber-wound, thin-walled, pressurized cylinder model for swimming vertebrates. J Zool Lond 238:35–52

    Article  Google Scholar 

  • Pennycuick CJ (1972) Animal Flight. Edward Arnold, London

    Google Scholar 

  • Pennycuick CJ (1982) The Flight of Petrels and Albatrosses (Procellariiformes), observed in South Georgia and its vicinity. Phil Trans Roy Soc Lond B 300:75–106

    Article  Google Scholar 

  • Reif WE (1985) Squamation and ecology of sharks. Cour Forsch-Inst Senckenberg 78:1–255

    Google Scholar 

  • Reif WE, Dinkelacker A (1982) Hydrodynamics of the squamation in fast swimming sharks. N Jb Geol Palaont Abh 164:184–187

    Google Scholar 

  • Sapir N, Dudley R (2012) Backward flight in hummingbirds employs unique kinematic adjustments and entails low metabolic cost. J Exp Biol 215:3603–3611

    Article  PubMed  Google Scholar 

  • Schlichting DH (1970) Boundary Layer Theory, 7th edn. McGraw-Hill, New York

    Google Scholar 

  • Sfakiotakis M, Lane DM, Davies JBC (1999) Review of fish swimming modes for aquatic locomotion. IEEE J Oceanic Eng 24:237–252

    Article  Google Scholar 

  • Shadwick RE (2005) How tunas and lamnid sharks swim: an evolutionary convergence. Am Sci 93:524–531

    Article  Google Scholar 

  • Spedding GR (1987) The wake of a kestrel (Falco tinnunculus) in gliding flight. J Exp Biol 127:45–57

    Google Scholar 

  • Spedding G, Browand F et al (2005) An experimental program for improving MAV aerodynamic performance. University of Southern California

    Google Scholar 

  • Tennekes H (1996) The Simple Science of Flight: from insects to jumbo jets. MIT Press, Cambridge

    Google Scholar 

  • Thomson KS (1976) On the heterocercal tail in sharks. Paleobiology 2:19–38

    Google Scholar 

  • Thomson KS, Simanek DE (1977) Body form and locomotion in sharks. Am Zool 17:343–354

    Google Scholar 

  • Thwaites B (1960) Incompressible aerodynamics. Dover, London

    Google Scholar 

  • Tucker VA (1993) Gliding birds: reduction of induced drag by wing tip slots between the primary feathers. J Exp Biol 180:285–310

    Google Scholar 

  • Wainwright SA, Biggs WD, Currey JD, Gosline JM (1976) Mechanical design in organisms. Edward Arnold, London

    Google Scholar 

  • Weihs D (2002) Dynamics of dolphin porpoising revisited. Integr Comp Biol 42:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Weihs D, Webb PW (1983) Optimization of locomotion. In: Webb PW, Weihs D (eds) Fish biomechanics. Praeger, New York, pp 339–371

    Google Scholar 

  • Wilga CD, Lauder GV (2000) Three-dimensional kinematics and wake structure of the pectoral fins during locomotion in leopard sharks Triakis semifasciata. J Exp Biol 203:2261–2278

    Google Scholar 

  • Wilga CD, Lauder G (2002) Function of the heterocercal tail in sharks: quantitative wake dynamics during steady horizontal swimming and vertical maneuvering. J Exp Biol 205:2365–2374

    CAS  PubMed  Google Scholar 

  • Wilga CD, Lauder GV (2004) Hydrodynamic function of the shark’s tail. Nature 430:850

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Wolfgang MJ, Yue DKP, Triantafyllou MS (2002) Three-dimensional flow structures and vorticity control in fish-like swimming. J Fluid Mech 468:1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theagarten Lingham-Soliar .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lingham-Soliar, T. (2015). Swimming and Flying in Vertebrates. In: The Vertebrate Integument Volume 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46005-4_1

Download citation

Publish with us

Policies and ethics