Skip to main content

Geologische CO2-Speicherung: Vergleich unterschiedlicher Kopplungsansätze für die hydraulische Reaktivierung von Störzonen

  • Conference paper
  • First Online:
Aktuelle Forschung in der Bodenmechanik 2015

Zusammenfassung

Die numerische Simulation einer geologischen CO2-Speicherung stellt aufgrund ihrer Formulierung als Mehrphasenflussproblem einen erheblichen Aufwand in der Modellierung dar. Bei der Kopplung von Ergebnissen aus geomechanischen Verformungsberechnungen und hydraulischen Simulationen kommen hydro-mechanische Einweg- und Zweiwegkopplungen zum Einsatz. Einwegkopplungen liefern häufig zu ungenaue Ergebnisse. Zweiwegkopplungen hingegen sind aufgrund ihres iterativen Charakters für Risikoanalysen, in denen mehrere hundert Szenarien betrachtet werden, sehr aufwändig. In diesem Beitrag wird basierend auf einer breit angelegten Parameterstudie ein Kriterium für die Notwendigkeit der Anwendung einer Zweiwegkopplung dargestellt und ein neuer Ansatz für eine hydro-mechanische quasi-Zweiwegkopplung von Störzonen erläutert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.R.F. Arthur and B.K. Menzies. Inherent anisotropy in sand. Géotechnique, 22(1):115–128, 1972.

    Article  Google Scholar 

  2. M. Budhu. Nonuniformities imposed by simple shear apparatus. Canadian Geotechnical Journal, 20:125–137, 1984.

    Article  Google Scholar 

  3. M. Budhu and A. Britto. Numerical analysis of soils in simple shear devices. Soils and Foundations, 27(2):31–41, 1987.

    Article  Google Scholar 

  4. J. Dührkop and J. Grabe. Monopilegründungen von Offshore-Windenergieanlagen - zum Einfluss einer veränderlichen zyklischen Lastangriffsrichtung. Bautechnik, 85(5):317–321, 2008.

    Article  Google Scholar 

  5. R. Galindo, M. Illueca, and R. Jimenez. Permanent deformation estimates of dynamic equipment foundations: Application to a gas turbine in granular soils. Soil Dynamics and Earthquake Engineering, 63:8–18, 2014.

    Google Scholar 

  6. W.S. Kaggwa, J.R. Booker, and J.P. Carter. Residual strains in calcareous sand due to irregular cyclic loading. Journal of Geotechnical Engineering, ASCE, 117(2):201–218, 1991. 7. R.S. Ladd. Specimen preparation and liquefaction of sands. Journal of the Geotechnical Engineering Division, ASCE, 100(GT10):1180–1184, 1974.

    Google Scholar 

  7. R.S. Ladd. Specimen preparation and cyclic stability of sands. Journal of the Geotechnical Engineering Division, ASCE, 103(GT6):535–547, 1977.

    Google Scholar 

  8. S. Miura and S. Toki. A sample preparation method and its effect on static and cyclic deformation-strength properties of sand. Soils and Foundations, 22(1):61–77, 1982. 66 Torsten Wichtmann

    Article  Google Scholar 

  9. J.P. Mulilis, C.K. Chan, and H.B. Seed. The effects of method of sample preparation on the cyclic stress-strain behavior of sands. Technical Report EERC 75-18, Earthquake Engineering Research Center, University of California, Berkeley, 1975.

    Google Scholar 

  10. J.P. Mulilis, H.B. Seed, C.K. Chan, J.K. Mitchell, and K. Arulanandan. Effects of sample preparation on sand liquefaction. Journal of the Geotechnical Engineering Division, ASCE, 103(GT2):91–108, 1977.

    Google Scholar 

  11. A. Niemunis. Extended hypoplastic models for soils. Habilitation, Veröffentlichungen des Institutes für Grundbau und Bodenmechanik, Ruhr-Universität Bochum, Heft Nr. 34, 2003. available from www.pg.gda.pl/∼aniem/an-liter.html.

  12. A. Niemunis, T. Wichtmann, and T. Triantafyllidis. A high-cycle accumulation model for sand. Computers and Geotechnics, 32(4):245–263, 2005.

    Article  Google Scholar 

  13. M. Oda. Initial fabrics and their relations to mechanical properties of granular material. Soils and Foundations, 12(1):17–36, 1972.

    Article  Google Scholar 

  14. M. Oda and K. Iwashita. Mechanics of Granular Materials. Balkema, Rotterdam, 1999.

    Google Scholar 

  15. T. Park and M.L. Silver. Dynamic soil properties required to predict the dynamic behavior of elevated transportation structures. Technical Report DOT-TST-75-44, U.S. Dept. of Transportation, 1975.

    Google Scholar 

  16. D. Porcino, G. Cicciù, and V.N. Ghionna. Laboratory investigation of the undrained cyclic behaviour of a natural coarse sand from undisturbed and reconstituted samples. In T. Triantafyllidis, editor, Cyclic Behaviour of Soils and Liquefaction Phenomena, Proc. of CBS04, pages 187–192. Balkema, 2004.

    Google Scholar 

  17. H.E. Stewart. Permanent strains from cyclic variable-amplitude loadings. Journal of Geotechnical Engineering, ASCE, 112(6):646–660, 1986.

    Article  Google Scholar 

  18. H.Y. Sze and J. Yang. Failure Modes of Sand in Undrained Cyclic Loading: Impact of Sample Preparation. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 140(1):152–169, 2014.

    Article  Google Scholar 

  19. F. Tatsuoka, K. Ochi, S. Fujii, and M. Okamoto. Cyclic undrained triaxial and torsional shear strength of sands for different sample preparation methods. Soils and Foundations, 26(3):23–41, 1986.

    Article  Google Scholar 

  20. F. Tatsuoka, S. Toki, S. Miura, Kato H., M. Okamoto, S.-I. Yamada, S. Yasuda, and F. Tanizawa. Some factors affecting cyclic undrained triaxial strength of sand. Soils and Foundations, 26(3):99–116, 1986.

    Article  Google Scholar 

  21. I. Towhata. Geotechnical Earthquake Engineering. Springer, 2008.

    Google Scholar 

  22. Y.P. Vaid and S. Sivathayalan. Fundamental factors affecting liquefaction susceptibility of sands. Canadian Geotechnical Journal, 37:592–606, 2000.

    Article  Google Scholar 

  23. Y.P. Vaid, S. Sivathayalan, and D. Stedman. Influence of specimen-reconstituting method on the undrained response of sand. Geotechnical Testing Journal, ASTM, 22(3):187–195, 1999.

    Article  Google Scholar 

  24. K. Westermann, H. Zachert, and T. Wichtmann. Vergleich von Ansätzen zur Prognose der Langzeitverformungen von OWEA-Monopilegründungen in Sand. Teil 1: Grundlagen der Ansätze und Parameterkalibration. Bautechnik, 91(5):309–323, 2014.

    Article  Google Scholar 

  25. K. Westermann, H. Zachert, and T. Wichtmann. Vergleich von Ansätzen zur Prognose der Langzeitverformungen von OWEA-Monopilegründungen in Sand. Teil 2: Simulationen und Schlussfolgerungen. Bautechnik, 91(5):324–332, 2014.

    Article  Google Scholar 

  26. T. Wichtmann, A. Niemunis, and T. Triantafyllidis. On the influence of the polarization and the shape of the strain loop on strain accumulation in sand under high-cyclic loading. Soil Dynamics and Earthquake Engineering, 27(1):14–28, 2007.

    Google Scholar 

  27. T. Wichtmann, A. Niemunis, and T. Triantafyllidis. Validation and calibration of a high-cycle accumulation model based on cyclic triaxial tests on eight sands. Soils and Foundations, 49(5):711–728, 2009.

    Article  Google Scholar 

  28. T. Wichtmann, A. Niemunis, and T. Triantafyllidis. On the determination of a set of material constants for a high-cycle accumulation model for non-cohesive soils. Int. J. Numer. Anal. Meth. Geomech., 34(4):409–440, 2010.

    Google Scholar 

  29. T. Wichtmann, A. Niemunis, and T. Triantafyllidis. On the ”elastic” stiffness in a high-cycle accumulation model for sand: a comparison of drained and undrained cyclic triaxial tests. Canadian Geotechnical Journal, 47(7):791–805, 2010.

    Article  Google Scholar 

  30. T. Wichtmann, A. Niemunis, and T. Triantafyllidis. Strain accumulation in sand due to drained cyclic loading: on the effect of monotonic and cyclic preloading (Miner’s rule). Soil Dynamics and Earthquake Engineering, 30(8):736–745, 2010.

    Google Scholar 

  31. T. Wichtmann, A. Niemunis, and T. Triantafyllidis. On the ”elastic stiffness” in a high-cycle accumulation model -continued investigations. Canadian Geotechnical Journal, 50(12):1260–1272, 2013.

    Article  Google Scholar 

  32. T. Wichtmann, A. Niemunis, and T. Triantafyllidis. Flow rule in a high-cycle accumulation model backed by cyclic test data of 22 sands. Acta Geotechnica, 9(4):695–709, 2014.

    Article  Google Scholar 

  33. T. Wichtmann, A. Niemunis, and T. Triantafyllidis. Improved simplified calibration procedure for a high-cycle accumulation model. Soil Dynamics and Earthquake Engineering (in print), 2014.

    Google Scholar 

  34. T. Wichtmann, A. Niemunis, and Th. Triantafyllidis. Gilt die Miner’sche Regel für Sand? Bautechnik, 83(5):341–350, 2006.

    Article  Google Scholar 

  35. T. Wichtmann, A. Niemunis, and Th. Triantafyllidis. Towards the FE prediction of permanent deformations of offshore wind power plant foundations using a high-cycle accumulation model. In International Symposium: Frontiers in Offshore Geotechnics, Perth, Australia, pages 635–640, 2010.

    Google Scholar 

  36. S. Yamashita and S. Toki. Effects of fabric anisotropy of sand on cyclic undrained triaxial and torsional strengths. Soils and Foundations, 33(3):92–104, 1993.

    Article  Google Scholar 

  37. Z.X. Yang, X.S. Li, and J. Yang. Quantifying and modelling fabric anisotropy of granular soils. Géotechnique, 58(4):237–248, 2008.

    Google Scholar 

  38. H. Zachert. Zur Gebrauchstauglichkeit von Gründungen für Offshore-Windenergieanlagen. Dissertation, Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik am Karlsruher Institut für Technologie (im Druck), 2015.

    Google Scholar 

  39. H. Zachert, T. Wichtmann, P. Kudella, T. Triantafyllidis, and U. Hartwig. Validation of a high cycle accumulation model via FE-simulations of a full-scale test on a gravity base foundation for offshore wind turbines. In International Wind Engineering Conference, IWEC 2014, Hannover, 2014.

    Google Scholar 

  40. H. Zachert, T. Wichtmann, T. Triantafyllidis, and U. Hartwig. Simulation of a full-scale test on a Gravity Base Foundation for Offshore Wind Turbines using a High Cycle Accumulation Model. In 3rd International Symposium on Frontiers in Offshore Geotechnics (ISFOG), Oslo, 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Adams Dipl.-Ing. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adams, M., Feinendegen, M., Tillner, E., Kempka, T., Ziegler, M. (2015). Geologische CO2-Speicherung: Vergleich unterschiedlicher Kopplungsansätze für die hydraulische Reaktivierung von Störzonen. In: Schanz, T., Hettler, A. (eds) Aktuelle Forschung in der Bodenmechanik 2015. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45991-1_14

Download citation

Publish with us

Policies and ethics