Skip to main content

Introduction

  • Chapter
  • First Online:
Dynamics of Vehicle-Road Coupled System
  • 2054 Accesses

Abstract

Chap 1 gives the state of research in vehicle dynamics, road dynamics and tire dynamics, and proposes the research scheme of vehicle-road coupled system dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sha QL. Highway asphalt pavement premature damage and prevention. Beijing: China Communications press; 2001.

    Google Scholar 

  2. Mamlouk MS. General outlook of pavement and vehicle dynamics. J Transp Eng. 1997;Nov/Dec:515–7.

    Article  Google Scholar 

  3. Cebon D. Theoretical road damage due to dynamic tire forces of heavy vehicles. Proc Inst Mech Eng. 1988;202:103–17.

    Google Scholar 

  4. Cole D J, Cebon D. Optimization of passive and semi-active heavy vehicle suspension. SAE 942309, 1994, 567–578.

    Article  Google Scholar 

  5. Cebon D. Interaction between heavy vehicles and roads. Warrendale: Society of Automotive Engineers; 1993 (SAE 930001).

    Book  Google Scholar 

  6. Collop AC, Cebon D. Parametric study of factors affecting flexible-pavement performance. J Transp Eng. 1995;Nov/Dec:485–94.

    Article  Google Scholar 

  7. Cole DJ. Truck suspension design to minimize road damage. Proc Inst Mech Eng. 1996;210(D):95–107.

    Article  Google Scholar 

  8. Potter TEC, Cebon D, Cole DJ. Assessing ‘Road— friendliness’: a review. Proc of the Inst Mech Eng. 1997;2l1(D4):455–75 (Part D)

    Article  Google Scholar 

  9. Cole DJ, Cebon D. Spatial repeatability of dynamic tire forces generated by heavy vehicles. Proc Inst Mech Eng, Part D. 1992;206(D):17–27 .

    Article  Google Scholar 

  10. Hardy MSA, Cebon D. Response of continuous pavements to moving dynamic loads. J Eng Mech. 1993;119(9):1762–80.

    Article  Google Scholar 

  11. Yi K, Hedrick JK. Active and semi-active heavy truck suspensions to reduce pavement damage. Society of Automotive Engineers; 1989. p. 588–95. (SAE 892486).

    Google Scholar 

  12. Kenis W, Kulakowski BT, Streit DA. Heavy vehicle pavement loading: a comprehensive testing program. Heavy vehicle and road: technology, safety and policy. London: Thomas Telford; 1992. pp. 260–5.

    Google Scholar 

  13. Markow MJ, Brademeyer BD. Analyzing the interactions between dynamic vehicle loads and highway pavements. Transp Res Rec. 1996;1196:161–9

    Google Scholar 

  14. Myers L. Measurement of contact stress for different truck tire types to evaluate their influence on near surface cracking and rutting. Transp Res Rec.1999;1655:175–84

    Article  Google Scholar 

  15. Sun L, Cai XM, Yang J. Genetic algorithm-based optimum vehicle suspension design using minimum dynamic pavement load as a design criterion. J Sound and Vib. 2007;301:18–27.

    Article  Google Scholar 

  16. Yu ZP, Huang XP, Zhang HX. The alleviation of road damage by heavy vehicles—optimization design of vehicle-suspension. China J Highw Transp. 1994;7(3):83–7.

    Google Scholar 

  17. Zhu KY. Study on the interaction between the vehicle and road system[D]. Chin Agric Univ. 2001.

    Google Scholar 

  18. Zhu KY, Yu Q. Study reality and prospect on the interaction of vehicle and pavement. J Xi’an Highw Univ. 2001;21(2):6–9, 23

    MATH  MathSciNet  Google Scholar 

  19. Xu B, Zheng GT, Fan T. The elements influencing road damage and the optimization of suspension parameters. Automot Eng. 2000;22(6):418–22.

    Google Scholar 

  20. Liu Q, Xu B, Lin B. Study of suspension parameters for reduction of road damage due to dynamic load. J Harbin Inst Technol. 2002;34(6):832–37.

    Google Scholar 

  21. Zheng Q, Yang FT. Effect of vehicle speed and roadway surface condition on the random dynamic loads of the wheels. J Hefei Univ Technol. 2002;24(1):139–42.

    Google Scholar 

  22. Zhang HX, Chen BC, Zhang TZ. Full probability evaluation of a pavement’s damage by a vehicle. J Qingdao Univ. 2002;17(1):60–3.

    Google Scholar 

  23. Zhang HX, Chen BC, Zhang TZ, et al. Relationship between smoothness of a heavy vehicle and Its caused damage to pavement. Trans Chin Soc Agric Mach. 2002;33(3):1–3, 7.

    Google Scholar 

  24. Zhang HX, Yin YC, Mou HB. Simulation of heavy vehicle performance improvement caused by active suspension. J Qingdao Univ. 2003;18(2):1–4.

    Google Scholar 

  25. Zhang HX. Study of the relation of heavy vehicle suspension parameter and pavement damage by a vehicle [D]. Changchun: Jilin University; 2002.

    Google Scholar 

  26. Yu Q, Cao YW. Vehicle dynamic loads caused by surface evenness. J Chongqing Jiaotong Univ. 2003;22(4):32–4.

    MathSciNet  Google Scholar 

  27. Zhang J. The research on the dynamic interaction between a heavy vehicle and rigid pavement structure[D]. Changsha: Hunan University; 2003.

    Google Scholar 

  28. Guo CC, Tao XH, Wang FM. The influence of vehicle speed and pavement roughness characteristics on vehicle-road interaction. J North China Inst Water Conserv Hydroelectr Power. 2004;25(3):42–5.

    Google Scholar 

  29. Yan TY, Liu DW, Chen HM. Road-friendliness of heavy vehicles based on active suspension systems. Chin J Mech Eng. 2007;43(2):163–7.

    Article  Google Scholar 

  30. Qu QZ. Analysis and evaluation of car body structure finite element methods. Automot Eng. 1996;18(3):148–51.

    Google Scholar 

  31. Lee NK. Design of engine mount using finite element method and optimization technique. Warrendale: Society of Automotive Engineers; 1998 (SAE 980379).

    Book  Google Scholar 

  32. Gao YK, et al. FEM calculation and structural modification sensitivity analysis for natural bending vibration characteristics of mini-bus power plant. Automot Eng. 1995;17(6):354–9.

    Google Scholar 

  33. He YS. Automotive vibration. Beijing: China Communications Press; 1990.

    Google Scholar 

  34. Li CD. The muti-freedoms model and random vibration response analysis of the whole vehicle system. Automot Eng. 1987;9(2):26–41.

    Google Scholar 

  35. Li J, Xing JW, Tan WJ. ADAMS tutorial examples. Beijing: Beijing Institute of Technology; 2002.

    Google Scholar 

  36. Chen LP. The dynamic analysis of mechanical systems and ADAMS applications. Beijing: Tsinghua University Press; 2004.

    Google Scholar 

  37. Yu F, Lin Y. Automotive system dynamics. Beijing: China Machine Press; 2005.

    Google Scholar 

  38. Vaculin O, Kortum W. Analysis and design of semi-active damping in truck suspension. Design by simulation, 2007.

    Google Scholar 

  39. Odhams AMC, Roebuck RL, Cebon D, et al. Dynamic safety of active trailer steering systems. Proc Inst Mech Eng (Part K: J Multi-body Dyn). 2008;22(4):367–80.

    Google Scholar 

  40. Yang Y, Ren WQ, Chen LQ. Study on ride comfort of a tractor with tandem suspension based on Multi-body system dynamics. Appl Math Model. 2009;33(1):11–33.

    Article  Google Scholar 

  41. Lu YJ, Yang SP, Li SH. Numerical and experimental investigation on stochastic dynamic load of a heavy duty vehicle. Appl Math Model. 2010;34(10):2698–710.

    Article  Google Scholar 

  42. Ren WQ, Zhang YQ, Jin GD. Systematic research method for vehicle-generated road damage. China J Highw Transp. 2005;18(4):111–4.

    Google Scholar 

  43. Ren WQ. Virtual prototype in vehicle-road system dynamics -MSC.ADAMS applicant and practice. Beijing: Publishing House of Electronics Industry; 2005.

    Google Scholar 

  44. Stensson A, Asplund C, Karlsson L. Nonlinear behavior of a MacPherson strut wheel suspension. Veh Syst Dyn. 1994;23(2):85–106.

    Article  Google Scholar 

  45. Kim K, Jeon D. Vibration suppression in an MR fluid damper suspension system. J Intell Mater Syst Struct. 2000;10(10):779–86.

    Article  Google Scholar 

  46. Zhu Q, Ishitobi M. Chaos and bifurcations in a nonlinear vehicle model. J Sound Vib. 2004;275(3–5):1136–46. ( Aug 23).

    Article  Google Scholar 

  47. Zhu Q, Ishitobi M. Chaotic vibration of a nonlinear full-vehicle model. Int J Sol Struct. 2006;43(3–4):747–59.

    Article  MATH  Google Scholar 

  48. Li SH, Yang SP, Guo WW. Investigation on chaotic motion in hysteretic nonlinear suspension system with multi-frequency excitation. Mech Res Commun. 2004;31:229–36.

    Article  MATH  Google Scholar 

  49. Li SH, Yang SP. Sub-harmonic resonance and singularity of a nonlinear vehicle suspension system. J Vib Eng. 2007;20(2):168–73.

    Google Scholar 

  50. Georgios T, Charles WS, Emanuele G. Hybrid balance control of a magneto rheological truck suspension. J Sound Vib. 2008;317(3–5):514–36.

    Google Scholar 

  51. Oscar M, Gonzalez JC, Alejandro L, et al. Effect of road profile on heavy vehicles with air suspension. Int J Heavy Veh Syst. 2007;14(1):98–110.

    Article  Google Scholar 

  52. Ji XW, Gao GM, Qiu XD. The dynamic stiffness and damping characteristics of the tire. Automot Eng. 1994;16(5):315–21.

    Google Scholar 

  53. Qu QZ, Liu YZ. Vehicle dynamics based on nonlinear characteristics of tires. Chin Q Mech. 2000;21(1):38–44.

    MathSciNet  Google Scholar 

  54. Meng Q, Wang HL. A study on bifurcations of vehicle systems. Automot Eng. 2004;26(1):50–3.

    MathSciNet  Google Scholar 

  55. Zhao DX, Zhu WN, Zhang ZD, et al. Measurement of three-dimensional dynamic stiffness and damping for an engineering tire. China J Highw Transp. 1990;(7):84–7.

    Google Scholar 

  56. Zhu B, Zhang LJ, Zou XH. A study on the random response of a nonlinear vehicle suspension system. J Liaoning Techn Univ. 2004;23(2):250–2.

    Google Scholar 

  57. Xu B, Shi YB, Wang GD. Suspension nonlinear components influence upon ride comfort and road friendliness. Veh Power Technol. 2005;1:46–51.

    Google Scholar 

  58. Yang XL. Nonlinear suspension construction parameters optimization of a heavy truck. Trans Chin Soc Agric Mach. 2007;38(6):23–5.

    Google Scholar 

  59. Jorge BS, Joseph C, Carl LM. Summary report on permanent deformation in asphalt concrete. Washington: Transportation Research Board Business Office; 1991.

    Google Scholar 

  60. Transportation Research Broad. Strategic highway research program 2 [EB/OL]. http://www.trb.org/SHRP2. 2009. Accessed 3 June 2009.

  61. OECD DIVNE. Dynamic interaction between vehicles and infrastructure experiment: technical report. Paris: Organization for Economic Co-operation and Development (OECD). Road Transport Research. Scientific Expert Group; 1998.

    Google Scholar 

  62. Timoshenko S. Method of analysis of statical and dynamic stress in rail. Proceedings of the Second International Conference for Applied Mechanics, Zurich, Switzerland; 1926. p. 407–18.

    Google Scholar 

  63. Kenny JT. Steady-state vibrations of a beam on an elastic foundation for a moving load. J Appl Mech. 1954;21(4):359–364.

    Google Scholar 

  64. Fryba L. Infinite beam on an elastic foundation subjected to a moving load. Aplikace Matematiky. 1957;12(2):105–1132.

    MathSciNet  Google Scholar 

  65. Steele CR. The finite beam with a moving load. J Appl Mech ASME. 1967;35(4):111–9.

    Article  MathSciNet  Google Scholar 

  66. Thambiratnam DP, Zhuge Y. Dynamic analysis of beams on an elastic foundation subjected to moving loads. J Sound Vib. 1996;198:149–69.

    Article  MATH  Google Scholar 

  67. Liu C, Gazis D Surface roughness effect on dynamic response of pavements. J Transp Eng ASCE. 1999;July/Aug:332–7.

    Article  Google Scholar 

  68. Sun L. A closed-form solution of a Bernoulli-Euler beam on a viscoelastic foundation under harmonic line loads. J Sound Vib. 2001;242(4):619–27.

    Article  Google Scholar 

  69. Giuseppe M, Alessandro P. Response of beams resting on a viscoelastically damped foundation to moving oscillators. Int J Sol Struct. 2007;44:1317–36.

    Article  MATH  Google Scholar 

  70. Deng XJ, Sun L. Study on the dynamics of a vehicle-ground pavement structure system. Beijing: China Communications Press; 2000.

    Google Scholar 

  71. Zhou HF, Jiang JQ, Zhang TQ. Steady-state response of an infinite beam on a Kelvin foundation under moving loads. J Zhejiang Univ. 2004;38(10):1328–33.

    Google Scholar 

  72. Zhou HF. Steady-state response of an infinite beam on a Kelvin foundation under moving loads[D]. J Zhejiang Univ (Eng Sci). 2005.

    Google Scholar 

  73. Lenci S, Tarantino AM. Chaotic dynamics of an elastic beam resting on a Winkler-type soil. Chaos, Solitons Fractals. 1996;7(10):1601–14.

    Article  MATH  MathSciNet  Google Scholar 

  74. Kargarnovin MH, Younesian D, Thompson DJ. Response of beams on nonlinear viscoelastic foundations to harmonic moving loads. Comp Struct. 2005;83:1865–77.

    Article  Google Scholar 

  75. Santee DM, Gonçalves PB. Oscillations of a beam on a non-linear elastic foundation under periodic loads. Shock Vib. 2006;13(4–5):273–84.

    Article  Google Scholar 

  76. Kang B, Tan CA. Nonlinear response of a beam under distributed moving contact load. Commun Nonlinear Sci Numer Simul. 2006;11:203–32.

    Article  MATH  Google Scholar 

  77. Zhang NM, Yang GT. Chaotic belt phenomena in a nonlinear elastic beam. Appl Math Mech. 2003;24(5):450–4.

    Google Scholar 

  78. Zhang Y, Sheng DF, Cheng CJ. Dynamic behaviors of viscoelastic beams with damage under finite deformation. Chin Q Mech. 2004;25(2):230–8.

    Google Scholar 

  79. Fulton J, Sneddon IN. The dynamic stresses produced in a thick plate by the action of surface forces. Proceedings of the Glasgow Mathematical Association. 1958;3(4):153–163.

    Google Scholar 

  80. Morley LSD. Elastic plate with loads travelling at uniform velocity along the bounding surfaces. QUART J MECH APPL MATH , 1962; 15(2): 193–213.

    Google Scholar 

  81. Liu C, McCullough BF, Oey HS. Response of a rigid pavement to vehicle-road interaction. J Transp Eng, ASCE. 2000;May/June:237–42

    Article  Google Scholar 

  82. Huang MH, Thambiratnam DP. Dynamic response of plates on an elastic foundation to moving loads. J Eng Mech. 2002;128(9):1016–22.

    Article  Google Scholar 

  83. Kim SM, McCullough BF. Dynamic response of a plate on a viscous Winkler foundation to moving loads of varying amplitude. Eng Struct. 2003;25:1179–88.

    Article  Google Scholar 

  84. Sun L. Dynamics of plate generated by moving harmonic loads. Trans ASME. 2005;72(Sep):772–7.

    Article  MATH  Google Scholar 

  85. Wu JJ. Dynamic analysis of a rectangular plate under a moving line load using scale beams and scaling laws. Comp Struct. 2005;83:1646–58.

    Article  Google Scholar 

  86. Cai YQ, Cao ZG, Sun HL, Xu CJ. Dynamic response of pavements on a poroelastic half-space soil medium to a moving traffic load. Comp Geotech. 2009;36:52–60.

    Article  Google Scholar 

  87. Cheng XS. Dynamic response of plates on elastic foundations due to the moving loads. Appl Math Mech. 1987;8(4):3–10.

    Google Scholar 

  88. Zheng XP., Wang SW. Dynamic analysis of simply supported rectangular plates on an elastic foundation under moving loads. Acta Aeronaut Et Astronaut Sinica. 1989;10(10):557–60.

    Google Scholar 

  89. Yang FT, Yu Q. Study on the dynamic response of a roadway to a moving vehicle. Trans CSAE. 1996;12(2):49–53.

    Google Scholar 

  90. Zhou HF, Jiang JQ. Dynamic response of rigid pavements to moving vehicles. China Civ Eng J. 2006;39(8):

    MathSciNet  Google Scholar 

  91. Jiang JQ, Zhou HF, Zhang TQ. Steady state response of an infinite plate on a viscoelastic foundation subjected to a moving load. China J Highw Transp. 2006;19(1):6–11.

    Google Scholar 

  92. Yan KZ. Study on the dynamic response of a thin plate on an elastic foundation[D]. Hangzhou: Zhejiang University; 2005.

    Google Scholar 

  93. Gajiendar N. Large amplitude vibrations of plates on an elastic foundation. Int J Nonlinear Mech. 1967;2(1):163–8.

    Article  Google Scholar 

  94. Nath Y. Large amplitude response of a circular plate on an elastic foundation. Int J Nonlinear Mech. 1982;17(4):285–96.

    Article  MATH  Google Scholar 

  95. Xiao YG, Fu YM, Zh XD. Bifurcation and chaos of rectangular moderately thick cracked plates on an elastic foundation subjected to periodic load. Chaos Solitons Fractals. 2008;35(3):460–65.

    Article  MATH  Google Scholar 

  96. Qiu P, Wang XZ, Ye KY. Bifurcation and chaos of the circular plates on the nonlinear elastic foundation. Appl Math Mech. 2003;24(8):779–84.

    Google Scholar 

  97. Yang ZA, Zhao XJ, Xi XY. Effective calculation method of multi-components non-stationary stochastic seismic response. J Vib Shock. 2006;25(5):69–73.

    Google Scholar 

  98. Yang ZA, Fan J. Study on 1/3 subharmonic resonance and chaos of a rectangular thin plate with four sides free on the Winkler foundation. J Tangshan Coll. 2006;19(2):87–96.

    Google Scholar 

  99. Eason G, Fulton J, Sneddon IN. The generation of waves in an infinite elastic solid by variable body forces. Philosophical transactions of the Royal society of London. 1956, 248: 575–607.

    Google Scholar 

  100. De Barros FCP. Luco JE. Response of a layered viscoelastic half-space to a moving point load. Wave Motion. 1994;19:189–210.

    Article  MATH  Google Scholar 

  101. Cao YM, Xia H, Lombaert G. Solution of moving-load-induced soil vibrations based on the Betti–Rayleigh Dynamic Reciprocal Theorem. Soil Dyn Earthq Eng. 2010;30:470–80.

    Article  Google Scholar 

  102. Zhong Y, Sun L, Huang YG. The explicit solution of axisymmetric elastic-dynamic problem for multilayered halfspace. China J Highw Transp. 1998;11(2):24–9.

    Google Scholar 

  103. Li HZ. Study on the dynamic load, ruts and reasonable axle load of a vehicle-pavement system. Beijing: China Agricultural university Press; 1999.

    Google Scholar 

  104. Wu CP, Shen PA. Dynamic analysis of concrete pavements subjected to moving loads. J Transp Eng ASCE. (Sep/Oct) 1995;367–73.

    Google Scholar 

  105. Michael J, Markow J. Hedrick K, Bran D, Brademeyer. Analyzing the Interactions between Dynamic Vehicle Loads and Highway Pavement. Transp Res Rec. 1988;1196:161–169.

    Google Scholar 

  106. Zai. Zafur, Raj V Siddharthan, Peter, E. Sebaaly. Dynamic pavement strain histories from moving traffic load. J Transp Eng ASCE. 1994;120(5):821–42.

    Article  Google Scholar 

  107. Siddharthan RV, Peter JY, Sebaaly E. Pavement Strain from Moving Dynamic 3D load Distribution. J Transp Eng ASCE. 1998;124(6):557–66.

    Article  Google Scholar 

  108. Wang WJ, Kenis W, Liu C. Procedure for NAFTA Truck Overload Simulation. Applications of Advanced Technologies in Transportation Engineering. 2004:475–80.

    Google Scholar 

  109. Kim D, Salgado R, Altschaeffl AG. Effects of Super single Tire Loadings on Pavements. J Transp Eng ASCE. (Oct) 2005;732–43.

    Google Scholar 

  110. Metrikine AV, Verichev SN, Blaauwendraad J. Stability of a two-mass oscillator moving on a beam supported by a viscoelastic half-space. Int J Solid Struct. 2005;42:1187–207.

    Article  MATH  Google Scholar 

  111. Jeongho O, Fernando EG, Lytton RL. Evaluation of damage potential for pavements due to overweight truck traffic. J transp Eng. (May) 2007;308–17.

    Google Scholar 

  112. Darestani MY, Thambiratnam DP, Nataatmadja A. Structural response of concrete pavements under moving truck loads. J transp Eng. (Dec.) 2007;670–6.

    Google Scholar 

  113. Asghar M, Stoner JW. Nonlinear pavement distress model using dynamic vehicle loads. J Infrastruct Syst. 1998;June:71–8.

    Google Scholar 

  114. Chen J. Basic research on the vehicle and the road surface interaction. Changchun: Jinlin University; 2002.

    Google Scholar 

  115. Hou Y, Sun SP, Guo ZY. Dynamic response sensitivity analysis of a plate on an elastic foundation subjected to moving point loads. J Tongji Univ. 2003;31(1):31–5.

    Google Scholar 

  116. Xie SY, Zheng CC. Effects of tire contact pressure on an asphalt pavement structure. J Chang’an Univ. 2004;24(3):12–6.

    MathSciNet  Google Scholar 

  117. Liu DW, Chen J, Yan TY, et al. Stress characteristics of a half rigid road under dynamic load. J Qingdao Univ. 2006;21(2):59–63.

    Google Scholar 

  118. Guo KH. Tire roller contact model for simulation of vehicle vibration input. Soc Automot Eng. 1993;991:45–51 (SAE 932008).

    Google Scholar 

  119. Guo KH, Liu Q, Ding GF. Influences of loading and inflation pressure on tire enveloping properties. Trans CSAE. 1998;14(3):53–5.

    Google Scholar 

  120. Guo KH, Liu Q, Ding GF. Analysis of tire enveloping properties and its application in modeling of vehicle vibration systems. Automot Eng. 1999;21(2):65–80.

    Google Scholar 

  121. Huang XP, Lin MC, Zhao JH. Study of tire displacement enveloping characteristics and calculation method of effective road surface spectrum. Automot Eng. 1991;13(3):161–69.

    Google Scholar 

  122. Guan X, Dong B. An active suspension system with enveloping tire model. Automot Eng. 2003;25(4):356–9.

    Google Scholar 

  123. Yang SP, Li SH, Lu YJ. Dynamics of a vehicle-pavement coupled system based on a revised flexible roller contact tire model. Sci China, Ser E. 2009;52(3):721–30.

    Article  MATH  Google Scholar 

  124. Fiala E. Seitenkrafte am rollenden luftreifen. ZVDI. 1954;29(11):81–92.

    Google Scholar 

  125. Gim G. Nikravesh PE. A three dimensional tire model for steady-state simulations of vehicles. SAE. 1993;102(2):150–9.

    Google Scholar 

  126. Pacejka HB, Sharp RS. Shear force development by pneumatic tyres in steady state conditions: a review of modelling aspects. Veh Syst Dyn. 1991;20(3/4):121–76.

    Article  Google Scholar 

  127. Guo Konghui. Vehicle Handling Dynamics Theory [M]. Nanjing: Jiangsu Science and Technology Publishing House; 2011.

    Google Scholar 

  128. Shiotsuka T. Adaptive control of a 4WS system by using a neural network. Veh Syst Dyn. 1993;22(5/6):411–24

    Article  Google Scholar 

  129. Palkovics L, El-Gindy M. Neural network representation of tire characteristics: the neuro-tyre. Veh Des. 1993;14(5/6):563–91.

    Google Scholar 

  130. Ren WQ, Huang MH, Jing GD. Vehicle handling and stability simulation with an artificial neural networks tire model. Comp Simul. 2000;17(2):46–9.

    Google Scholar 

  131. Cui SM, Wang F. Tire cornering characteristics model based on an artificial neural network. Tire Ind. 2000;20(1):11–4.

    Google Scholar 

  132. Guan DH, Wu WD. Experimental modal analysis of tire dynamics. Automot Eng. 1995;17(6):328–33.

    Google Scholar 

  133. Rao KVN, Kumar RK. Simulation of tire dynamic behavior using various finite element techniques. Comp Methods Eng Sci Mech. 2007;8(5):363–72.

    Article  MATH  Google Scholar 

  134. Gall R, Tkacik P. On the incorporation of frictional effects on the tire/ground contact area. Tire Sci Technol. 1993;21(1):2–22.

    Article  Google Scholar 

  135. Mousseau CW. An analytical and experimental study of a tire rolling over a stepped obstacle at low velocity. Tire Sci Technol. 1994;22(3):162–81.

    Article  Google Scholar 

  136. Liang B, Cai Y, Zhu DS. Dynamic analysis on a vehicle-subgrade model of a vertical coupled system. J China Railw Soc. 2000;22(5):65–71.

    Google Scholar 

  137. Chen G, Zhai WM, Zuo HF. Vertical lateral model of a vehicle-track coupling system and its verification. J Vib Shock. 2001;20(4):16–21.

    Google Scholar 

  138. Wang KY, Zhai WM, Cai CB. The model of locomotive-track spatially coupled dynamics and its verification. J China Railw Soc. 2002;21(4):21–7.

    Google Scholar 

  139. Zhai WM. Vehicle-track coupling dynamics. Beijing: China Railway Publishing House; 2002.

    Google Scholar 

  140. Xia H, Chen YJ. Analysis of the lateral dynamic interaction in a vehicle-girder-pier system. China Civ Eng J. 1992;25(2):3–12.

    Google Scholar 

  141. Xia H. Dynamic interaction of vehicle and structure. Beijing: Science Press; 2002

    Google Scholar 

  142. Law SS, Zhu XQ. Bridge dynamic responses due to road surface roughness and braking of a vehicle. J Sound Vib. 2005;282;805–30.

    Article  Google Scholar 

  143. Yang YB, Lin CW. Vehicle-bridge interaction dynamics and potential applications. J Sound Vib. 2005;284:205–26.

    Article  Google Scholar 

  144. Wang JJ, Zhang W, Wu WX Analysis of dynamic responses of a simply supported girder bridge under heavy moving vehicles. Cent south highw eng. 2005;30(2):55–7.

    Google Scholar 

  145. Sheng GG, Li CX, Zhao B. Dynamic analysis of a simply-supported beam subjected to moving vehicles. Eng Mech. 2006;23(12):154–8.

    MATH  Google Scholar 

  146. Li SH, Yang SP. Investigation of the interaction between a vehicle and the road using the second road excitation on the vehicle. Proc Inst Mech Eng, Part D: J Automob Eng. 2009; 223(7):855–63.

    Article  Google Scholar 

  147. Yang SP, Li SH, Lu YJ. Investigation of the dynamic interaction between a heavy vehicle and road pavement. Veh Syst Dyn. 2010;48(8):923–44.

    Article  Google Scholar 

  148. Ding H, Chen LQ, Yang SP. Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load. J Sound Vib. doi:10.1016/j.jsv.2011.12.036.

    Google Scholar 

  149. Li SH, Yang SP, Chen LQ. Effects of parameters on dynamic responses for a heavy vehicle-pavement-foundation coupled system. Int J Heavy Veh Syst. 2012;19(2):207–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaopu Yang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Science Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yang, S., Chen, L., Li, S. (2015). Introduction. In: Dynamics of Vehicle-Road Coupled System. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45957-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45957-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45956-0

  • Online ISBN: 978-3-662-45957-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics