Skip to main content

Thermo-responsive Wormlike Micelles

  • Chapter
  • First Online:
Smart Wormlike Micelles

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

This chapter summarizes findings on the simplest trigger applied to wormlike micellar: temperature. Thermo-thinning systems are not discussed since a viscosity decrease with temperature is a rather general characteristic of most systems. Instead, the unique thermo-viscosifying behaviour displayed by some WLMs and the possibility of imparting a pseudo “sol/gel” transition in specific systems are extensively addressed. These two types of systems show a transition from either a low-viscosity fluid or a viscoelastic solution to a gel-like state by tuning the temperature. The thermo-thickening behaviour and the underlying mechanisms of various types of thermo-thickening wormlike micellar systems (non-ionic, cationic, anionic, and zwitterionic) are discussed in terms of molecular structure–property relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Candau SJ, Hirsch E, Zana R, Delsanti M (1989) Rheological properties of semidilute and concentrated aqueous solutions of cetyltrimethylammonium bromide in the presence of potassium bromide. Langmuir 5:1225–1229

    Article  CAS  Google Scholar 

  2. Salkar RA, Hassan PA, Samant SD, Valaulikar BS, Kumar VV, Kern F, Candau SJ, Manohar C (1996) A thermally reversible vesicle to micelle transition driven by a surface solid–fluid transition. Chem Commun 10:1223–1224

    Article  Google Scholar 

  3. Kalur GC, Frounfelker BD, Cipriano BH, Norman AI, Raghavan SR (2005) Viscosity increase with temperature in cationic surfactant solutions due to the growth of wormlike micelles. Langmuir 21:10998–11004

    Article  CAS  Google Scholar 

  4. Davies TS, Ketner AM, Raghavan SR (2006) Self-assembly of surfactant vesicles that transform into viscoelastic wormlike micelles upon heating. J Am Chem Soc 128:6669–6675

    Article  CAS  Google Scholar 

  5. Abe M, Tobita K, Sakai H, Kamogawa K, Momozawa N, Kondo Y, Yoshino N (2000) Thermoresponsive viscoelasticity of concentrated solutions with a fluorinated hybrid surfactant. Colloid Surf A-Physicochem Eng Asp 167:47–60

    Article  CAS  Google Scholar 

  6. Tobita K, Sakai H, Kondo Y, Yoshino N, Kamogawa K, Momozawa N, Abe M (1998) Temperature-induced critical phenomenon of hybrid surfactant as revealed by viscosity measurements. Langmuir 14:4753–4757

    Article  CAS  Google Scholar 

  7. Hassan PA, Valaulikar BS, Manohar C, Kern F, Bourdieu L, Candau SJ (1996) Vesicle to micelle transition: rheological investigations. Langmuir 12:4350–4357

    Article  CAS  Google Scholar 

  8. Varade D, Ushiyama K, Shrestha LK, Aramaki K (2007) Wormlike micelles in Tween-80/C m EO3 mixed nonionic surfactant systems in aqueous media. J Colloid Interface Sci 312:489–497

    Article  CAS  Google Scholar 

  9. Narayanan J, Mendes E, Manohar C (2002) Vesicle to micelle transition driven by surface solid–fluid transition. Int J Mod Phys B 16:375–382

    Article  CAS  Google Scholar 

  10. Greenhill-Hooper MJ, O’Sullivan TP, Wheeler PA (1988) The aggregation behavior of octadecylphenylalkoxysulfonates: I. Temperature-dependence of the solution behavior. J Colloid Interface Sci 124:77–87

    Article  CAS  Google Scholar 

  11. Kumar R, Kalur GC, Ziserman L, Danino D, Raghavan SR (2007) Wormlike micelles of a C22-tailed zwitterionic betaine surfactant: from viscoelastic solutions to elastic gels. Langmuir 23:12849–12856

    Article  CAS  Google Scholar 

  12. Lin Y, Qiao Y, Yan Y, Huang J (2009) Thermo-responsive viscoelastic wormlike micelle to elastic hydrogel transition in dual-component systems. Soft Matter 5:3047–3053

    Article  CAS  Google Scholar 

  13. Yuan Z, Lu W, Liu W, Hao J (2008) Gel phase originating from molecular quasi-crystallization and nanofiber growth of sodium laurate-water system. Soft Matter 4:1639–1644

    Article  CAS  Google Scholar 

  14. Sharma SC, Shrestha LK, Tsuchiya K, Sakai K, Sakai H, Abe M (2009) Viscoelastic wormlike micelles of long polyoxyethylene chain phytosterol with lipophilic nonionic surfactant in aqueous solution. J Phys Chem B 113:3043–3050

    Article  CAS  Google Scholar 

  15. Strunk H, Lang P, Findenegg GH (1994) Clustering of micelles in aqueous solutions of tetraoxyethylene-N-octyl ether (C(8)E(4)) as monitored by static and dynamic light-scattering. J Phys Chem 98:11557–11562

    Article  CAS  Google Scholar 

  16. Moon HJ, Ko DY, Park MH, Joo MK, Jeong B (2012) Temperature-responsive compounds as in situ gelling biomedical materials. Chem Soc Rev 41:4860–4883

    Article  CAS  Google Scholar 

  17. Lee H, Pietrasik J, Sheiko SS, Matyjaszewski K (2010) Stimuli-responsive molecular brushes. Prog Polym Sci 35:24–44

    Article  CAS  Google Scholar 

  18. Lutz J-F, Akdemir O, Hoth A (2006) Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly(NIPAM) over? J Am Chem Soc 128:13046–13047

    Article  CAS  Google Scholar 

  19. Lutz J-F, Hoth A (2006) Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules 39:893–896

    Article  CAS  Google Scholar 

  20. Munoz-Bonilla A, Fernandez-Garcia M, Haddleton DM (2007) Synthesis and aqueous solution properties of stimuli-responsive triblock copolymers. Soft Matter 3:725–731

    Article  CAS  Google Scholar 

  21. Yin XC, Stover DH (2003) Hydrogel microspheres formed by complex coacervation of partially MPEG-grafted poly(styrene-alt-maleic anhydride) with PDADMAC and cross-linking with polyamines. Macromolecules 36:8773–8779

    Article  CAS  Google Scholar 

  22. Lutz J-F, Weichenhan K, Akdemir O, Hoth A (2007) About the phase transitions in aqueous solutions of thermoresponsive copolymers and hydrogels based on 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules 40:2503–2508

    Article  CAS  Google Scholar 

  23. Hwang MJ, Suh JM, Bae YH, Kim SW, Jeong B (2005) Caprolactonic poloxamer analog: PEG-PCL-PEG. Biomacromolecules 6:885–890

    Article  CAS  Google Scholar 

  24. Yamamoto S, Pietrasik J, Matyjaszewski K (2007) ATRP synthesis of thermally responsive molecular brushes from oligo(ethylene oxide) methacrylates. Macromolecules 40:9348–9353

    Article  CAS  Google Scholar 

  25. Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55:403–419

    Article  CAS  Google Scholar 

  26. Moon K-S, Kim H-J, Lee E, Lee M (2007) Self-assembly of T-Shaped aromatic amphiphiles into stimulus-responsive nanofibers. Angew Chem Int Ed 46:6807–6810

    Article  CAS  Google Scholar 

  27. Kim J-K, Lee E, Kim M-C, Sim E, Lee M (2009) Reversible transformation of helical coils and straight rods in cylindrical assembly of elliptical macrocycles. J Am Chem Soc 131:17768–17770

    Article  CAS  Google Scholar 

  28. Sharma SC, Shrestha LK, Sakai K, Sakai H, Abe M (2010) Viscoelastic solution of long polyoxyethylene chain phytosterol/monoglyceride/water systems. Colloid Polym Sci 288:405–414

    Article  CAS  Google Scholar 

  29. Afifi H, Karlsson G, Heenan RK, Dreiss CA (2011) Solubilization of oils or addition of monoglycerides drives the formation of wormlike micelles with an elliptical cross-section in cholesterol-based surfactants: a study by rheology, SANS, and Cryo-TEM. Langmuir 27:7480–7492

    Article  CAS  Google Scholar 

  30. Shrestha RG, Sakai K, Sakai H, Abe M (2011) Rheological properties of polyoxyethylene cholesteryl ether wormlike micelles in aqueous system. J Phys Chem B 115:2937–2946

    Article  CAS  Google Scholar 

  31. Ahmed T, Aramaki K (2009) Temperature sensitivity of wormlike micelles in poly(oxyethylene) surfactant solution: importance of hydrophobic-group size. J Colloid Interface Sci 336:335–344

    Article  CAS  Google Scholar 

  32. Constantin D, Freyssingeas É, Palierne J-F, Oswald P (2003) Structural transition in the isotropic phase of the C12EO6/H2O lyotropic mixture: a rheological investigation. Langmuir 19:2554–2559

    Article  CAS  Google Scholar 

  33. Bernheim-Groswasser A, Wachtel E, Talmon Y (2000) Micellar growth, network formation, and criticality in aqueous solutions of the nonionic surfactant C12E5. Langmuir 16:4131–4140

    Article  CAS  Google Scholar 

  34. Bulut S, Hamit J, Olsson U, Kato T (2008) On the concentration-induced growth of nonionic wormlike micelles. Eur Phys J E: Soft Matter Biol Phys 27:261–273

    Article  CAS  Google Scholar 

  35. Acharya DA, Sharma SJ, Rodriguez-Abreu C, Aramaki K (2006) Viscoelastic micellar solutions in nonionic fluorinated surfactant systems. J Phys Chem B 110:20224–20234

    Article  CAS  Google Scholar 

  36. Dreiss CA (2007) Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 3:956–970

    Article  CAS  Google Scholar 

  37. Johansson H, Karlstrom G, Tjerneld F (1993) Experimental and theoretical study of phase separation on aqueous solutions of clouding polymers and carboxylic acids. Macromolecules 26:4478–4483

    Article  CAS  Google Scholar 

  38. Zhang KW, Karlstrom G, Lindman B (1994) Ternary aqueous mixture of a non-ionic polymer with a surfactant or a 2nd polymer—a theoretical and experimental investigations of the phase behavior. J Phys Chem 98:4411–4421

    Article  CAS  Google Scholar 

  39. Wennerström H, Lindman B (1979) Micelles—physical chemistry of surfactant association. Phys Rep—Rev Sec Phys Lett 52:1–86

    Google Scholar 

  40. Lindmann B, Wennerström H (1991) Nonionic micelles grow with increasing temperature. J Phys Chem 95:6053–6054

    Article  Google Scholar 

  41. Corti M, Minero C, Degiorgio V (1984) Cloud point transition in non-ionic micellar solutions. J Phys Chem 88:309–317

    Article  CAS  Google Scholar 

  42. Debye P, Anacker E (1951) Micelle shape from dissymmetry measurements. J Phys Chem 55:644–655

    Article  CAS  Google Scholar 

  43. Nash T (1958) The interaction of some naphthalene derivatives with a cationic soap below the critical micelle concentration. J Colloid Sci 13:134–139

    Article  CAS  Google Scholar 

  44. Raghavan SR, Kaler EW (2001) Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails. Langmuir 17:300–306

    Article  CAS  Google Scholar 

  45. Gravsholt S (1976) Viscoelasticity in highly dilute aqueous solutions of pure cationic detergents. J Colloid Interface Sci 57:575–577

    Article  CAS  Google Scholar 

  46. Porte G, Appell J, Poggi Y (1980) Experimental investigations on the flexibility of elongated cetylpyridinium bromide micelles. J Phys Chem 84:3105–3110

    Article  CAS  Google Scholar 

  47. Imae T, Kamiya R, Ikeda S (1985) Formation of spherical and rodlike micelles of cetyltrimethylammonium bromide in aqueous NaBr solutions. J Colloid Interface Sci 108:215–225

    Article  CAS  Google Scholar 

  48. Rehage H, Hoffmann H (1988) Rheological properties of viscoelastic surfactant systems. J Phys Chem 92:4712–4719

    Article  CAS  Google Scholar 

  49. Li J, Zhao W, Zheng L (2012) Spontaneous formation of vesicles by N-dodecyl-N-methylpyrrolidinium bromide (C12MPB) ionic liquid and sodium dodecyl sulfate (SDS) in aqueous solution. Colloid Surf A-Physicochem Eng Asp 396:16–21

    Article  CAS  Google Scholar 

  50. Mendes E, Oda R, Manohar C, Narayanan J (1998) A small-angle neutron scattering study of a shear-induced vesicle to micelle transition in surfactant mixtures. J Phys Chem B 102:338–343

    Article  CAS  Google Scholar 

  51. Horbaschek K, Hoffmann H, Thunig C (1998) Formation and properties of lamellar phases in systems of cationic surfactants and hydroxy-naphthoate. J Colloid Interface Sci 206:439–456

    Article  CAS  Google Scholar 

  52. Chu Z, Dreiss CA, Feng Y (2013) Smart wormlike micelles. Chem Soc Rev 42:7174–7203

    Article  CAS  Google Scholar 

  53. Sreejith L, Parathakkat S, Nair SM, Kumar S, Varma G, Hassan PA, Talmon Y (2011) Octanol-triggered self-assemblies of the CTAB/KBr system: a microstructural study. J Phys Chem B 115:464–470

    Article  CAS  Google Scholar 

  54. Yoshino N, Hamano K, Omiya Y, Kondo Y, Ito A, Abe M (1995) Synthesis of hybrid anionic surfactants containing fluorocarbon and hydrocarbon chains. Langmuir 11:466–469

    Article  CAS  Google Scholar 

  55. Tobita K, Sakai H, Kondo Y, Yoshino N, Iwahashi M, Momozawa N, Abe M (1997) Thermoresponsive viscoelasticity of sodium 1-oxo-1-[4-(tridecafluorohexyl)phenyl]-2-hexanesulfonate aqueous solutions. Langmuir 13:5054–5055

    Article  CAS  Google Scholar 

  56. Danino D, Weihs D, Zana R, Orädd G, Lindblom G, Abe M, Talmon Y (2003) Microstructures in the aqueous solutions of a hybrid anionic fluorocarbon/hydrocarbon surfactant. J Colloid Interface Sci 259:382–390

    Article  CAS  Google Scholar 

  57. Chu Z, Feng Y (2011) Thermo-switchable surfactant gel. Chem Commun 47:7191–7193

    Article  CAS  Google Scholar 

  58. Chu Z, Feng Y, Su X, Han Y (2010) Wormlike micelles and solution properties of a C22-tailed amidosulfobetaine surfactant. Langmuir 26:7783–7791

    Article  CAS  Google Scholar 

  59. Chu Z, Feng Y (2010) Amidosulfobetaine surfactant gels with shear banding transitions. Soft Matter 6:6065–6067

    Article  CAS  Google Scholar 

  60. Chu Z, Feng Y, Sun H, Li Z, Song X, Han Y, Wang H (2011) Aging mechanism of unsaturated long-chain amidosulfobetaine worm fluids at high temperature. Soft Matter 7:4485–4489

    Article  CAS  Google Scholar 

  61. Fisher P, Rehage H, Grüning B (2002) Linear flow properties of dimer acid betaine solutions with and without changed ionic strength. J Phys Chem B 106:11041–11046

    Article  Google Scholar 

  62. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879

    Article  CAS  Google Scholar 

  63. Trickett K, Eastoe J (2008) Surfactant-based gels. Adv Colloid Interface Sci 144:66–74

    Article  CAS  Google Scholar 

  64. Raghavan SR (2009) Distinct character of surfactant gels: a smooth progression from micelles to fibrillar networks. Langmuir 25:8382–8385

    Article  CAS  Google Scholar 

  65. Kavanagh GM, Ross-Murphy SB (1998) Rheological characterisation of polymer gels. Prog Polym Sci 23:533–562

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujun Feng .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Feng, Y., Chu, Z., Dreiss, C.A. (2015). Thermo-responsive Wormlike Micelles. In: Smart Wormlike Micelles. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45950-8_2

Download citation

Publish with us

Policies and ethics