Skip to main content

Predictability of a Physically Based Model for Rainfall-induced Shallow Landslides: Model Development and Case Studies

  • Chapter
  • First Online:
Modern Technologies for Landslide Monitoring and Prediction

Part of the book series: Springer Natural Hazards ((SPRINGERNAT))

Abstract

A cost-effective physical model (SLope-Infiltration-distributed Equilibrium—SLIDE) has been developed to identify the spatial and temporal occurrences of rainfall-induced landslides, employing a range of remotely sensed and in situ data. The main feature of SLIDE is that it takes into account of some simplified hypotheses on water infiltration and defines a direct relationship between the factor of safety and the rainfall depth on an infinite slope model. This prototype has been applied to two case studies in Indonesia and Honduras during heavy rainfall events brought by typhoon and hurricane, respectively. Simulation results from SLIDE demonstrated good skills in predicting rainfall-induced shallow landslides by assimilating the most important dynamic triggering factor (i.e., rainfall) quantitatively. The model’s prediction performance also suggested that SLIDE could serve as a potential tool for the future landslide early-warning system. Despite positive model performance, the SLIDE model is limited by several assumptions including using general parameter calibration rather than in situ tests and neglecting geotechnical information and some of the hydrological processes in deep soil layers. Advantages and limitations of this physically based model are also discussed with respect to future applications of landslide assessment and prediction over large scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baum, R. L., Savage, W. Z., & Godt, J. W. (2002). TRIGRS—a fortran program for transient rainfall infiltration and grid-based regional slope stability analysis. United States Geological Survey Open File Report.

    Google Scholar 

  • Boebel, O., Kindermann, L., Klinck, H., Bornemann, H., Plotz, J., Steinhage, D., et al. (2006). Satellite remote sensing for global landslide monitoring. EOS Transactions, American Geophysical Union, 87(37), 357–358.

    Google Scholar 

  • Dai, E. C., Lee, C. F., & Nagi, Y. Y. (2002). Landslide risk assessment and management: An overview. Engineering Geology, 64, 65–87.

    Article  Google Scholar 

  • Dietrich, W. E., Reiss, R., Hsu, M. L., & Montgomery, D. R. (1995). A process based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Process, 9, 383–400.

    Article  Google Scholar 

  • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27, 861–874.

    Article  Google Scholar 

  • Godt, J. W., Baum, R. L., & Lu, N. (2009). Landsliding in partially saturated materials. Geophysical Research Letters 36, paper no. L02403.

    Google Scholar 

  • Harp, E. L., Hagaman, K. W., Held, M. D., & McKenna, J. P. (2002). Digital inventory of landslides and related deposits in Honduras Triggered by Hurricane Mitch. United States Geological Survey Open-File Report 02-61.

    Google Scholar 

  • He, X., Hong, Y., Yu, X., Cerato, A. B., Zhang, X., & Komac, M. (2014). Landslides susceptibility mapping in Oklahoma state using GIS-based weighted linear combination method. In: K. Sassa, et al. (Eds.), Landslide science for a safer geoenvironment (Vol. 2, pp. 371–377). Heidelberg: Springer.

    Google Scholar 

  • Hong, Y., Adler, R. F., & Huffman, G. (2006). Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment. Geophysical Research Letters 33, paper no. L22402.

    Google Scholar 

  • Hong, Y., Adler, R. F., & Huffman, G. (2007). Use of satellite remote sensing data in mapping of global shallow landslides susceptibility. Natural Hazards, 43(2), 245–256.

    Article  Google Scholar 

  • Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., et al. (2007). The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8, 38–55.

    Article  Google Scholar 

  • Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water Resources Research, 36(7), 1897–1910.

    Article  Google Scholar 

  • Kirschbaum, D. B., Adler, R. F., Hong, Y., Hill, S., & Lerner-Lam, A. L. (2009a). A global landslide catalog for hazard applications: Method, results and limitations. Natural Hazards, 52(3), 561–575.

    Article  Google Scholar 

  • Kirschbaum, D. B., Adler, R. F., Hong, Y., & Lerner-Lam, A. L. (2009b). Evaluation of a preliminary satellite-based landslide hazard algorithm using global landslide inventories. Natural Hazards and Earth System Science, 9, 673–686.

    Article  Google Scholar 

  • Kirschbaum, D. B., Adler, R. F., Hong, Y., Peters-Lidard, C., & Lerner-Lam, A. L. (2012). Advances in landslide hazard forecasting: Evaluation of a global and regional modeling approach. Environmental Earth Sciences, 66, 1683–1696.

    Article  Google Scholar 

  • Liao, Z., Hong, Y., Wang, J., Fukuoka, H., Sassa, K., Karnawati, D., et al. (2010). Prototyping an experimental early warning system for rainfall-induced landslides in Indonesia using satellite remote sensing and geospatial datasets. Landslides, 7(3), 317–324.

    Article  Google Scholar 

  • Liao, Z., Hong, Y., Kirschbaum, D., & Liu, C. (2011). Assessment of shallow landslides from Hurricane Mitch in central America using a physically based model. Environmental Earth Sciences, 66(6), 1697–1705.

    Article  Google Scholar 

  • Lu, N., & Godt, J. W. (2008). Infinite slope stability under unsaturated seepage conditions. Water Resources Research 44, paper no. W11404.

    Google Scholar 

  • Montrasio, L., & Valentino, R. (2008). A model for triggering mechanisms of shallow landslides. Natural Hazards and Earth System Science, 8, 1149–1159.

    Article  Google Scholar 

  • Nadim, F., Kjekstad, O., Peduzzi, P., Herold, C., & Jaedicke, C. (2006). Global landslide and avalanche hotspots. Landslides, 3, 159–173.

    Article  Google Scholar 

  • Sidle, R. C., & Ochiai, H. (2006). Landslides: Processes, prediction, and land use. In: Proceedings of AGU Conference 2006, Washington DC.

    Google Scholar 

  • Sorbino, G., Sica, C., & Cascini, L. (2010). Susceptibility analysis of shallow landslides source areas using physically based models. Natural Hazards, 53, 313–332.

    Article  Google Scholar 

  • Taylor, D. W. (1948). Fundamentals of soil mechanics. New York: Wiley.

    Google Scholar 

  • Wang, J., Hong, Y., Li, L., Gourley, J., Khan, S., Yilmaz, K., et al. (2011). The coupled routing and excess storage (CREST) distributed hydrological model. Hydrological Sciences Journal, 56(1), 84–98.

    Article  Google Scholar 

  • Wardani, S. P. R., & Kodoatie, R. J. (2008). Disaster management in Central Java Province, Indonesia. In: H. Liu & A. Deng, J. Chu (Eds.), Geotechnical engineering for disaster mitigation and rehabilitation (pp. 254–259). Heidelberg: Springer.

    Google Scholar 

  • Wu, W., & Sidle, R. C. (1995). A distributed slope stability model for steep forested basins. Water Resources Research, 31, 2097–2110.

    Article  Google Scholar 

Download references

Acknowledgments

The authors of this chapter acknowledge the partial fund support from NASA, Oklahoma Department of Transportation, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hong, Y., He, X., Cerato, A., Zhang, K., Hong, Z., Liao, Z. (2015). Predictability of a Physically Based Model for Rainfall-induced Shallow Landslides: Model Development and Case Studies. In: Scaioni, M. (eds) Modern Technologies for Landslide Monitoring and Prediction. Springer Natural Hazards. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45931-7_9

Download citation

Publish with us

Policies and ethics