Skip to main content

A New Approach Based on Terrestrial Remote-sensing Techniques for Rock Fall Hazard Assessment

  • Chapter
  • First Online:
Book cover Modern Technologies for Landslide Monitoring and Prediction

Part of the book series: Springer Natural Hazards ((SPRINGERNAT))

Abstract

Remote-sensing techniques are changing the way of investigating the Earth and its surface processing. Among these, rock fall from vertical cliffs are very frequent and difficult to be investigated because they frequently occur from inaccessible places. At this regard, terrestrial remote-sensing techniques represent a great opportunity for investigating inaccessible cliffs from a remote position. In this paper, a new approach for the investigation of rock cliff and the prioritization of rock fall hazard based on data collected by remote-sensing techniques has been developed and applied to a real coastal cliff located in the southern part of Italy. By the herein presented approach, data derived from a survey performed by the combination of terrestrial laser scanner, ground-based SAR interferometry and infrared thermography are used in order to identify both predisposing factors (mapping of discontinuities) and state of activity indicators of rock instabilities. Hence, a prioritizations map of the cliff in terms of stability interventions is achieved that can be easily used by local authorities in charge of land management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abellán, A., Calvet, J., Vilaplana, J. M., & Blanchard, J. (2010). Detection and spatial prediction of rock falls by means of terrestrial laser scanner monitoring. Geomorphology, 119, 162–171.

    Article  Google Scholar 

  • Abellán, A., Oppikofer, T., Jaboyedoff, M., Rosser, N. J., Lim, M., & Lato, M. J. (2014). Terrestrial laser scanning of rock slope instabilities. Earth Surface Processes and Landforms, 39(1), 80–97.

    Article  Google Scholar 

  • Arosio, D., Longoni, L., Papini, M., Scaioni, M., Zanzi, L., & Alba, M. I. (2009). Towards rockfall forecasting through observing deformations and listening to microseismic emissions. Natural Hazards and Earth System Science, 9(4), 1119–1131.

    Article  Google Scholar 

  • Baroň, I., Bečkovský, D., & Míča, L. (2012). Application of infrared thermography for mapping open fractures in deep-seated rockslides and unstable cliffs. Landslides, 11, 15–27.

    Google Scholar 

  • Bertotti, G., Casolari, E., & Ricotti, V. (1999). The Gargano Promontory: A neogene contractional belt within the Adriatic plate. Terra Nova, 11, 168–173.

    Article  Google Scholar 

  • Bosellini, A., Neri, C., & Lucani, V. (1993). Platform margin collapses and sequence stratigraphic organization of carbonate slopes: Cretaceous-Eocene, Gargano Promontory. Terra Nova, 5, 282–297.

    Article  Google Scholar 

  • Bosellini, A., Morsilli, M., & Neri, C. (1999). Long-term event stratigraphy of the Apulia Platform margin: Upper Jurassic to Eocene, Gargano, Southern Italy. Journal of Sedimentary Research, 69, 1241–1252.

    Article  Google Scholar 

  • Bozzano, F., Mazzanti, P., Prestininzi, A., & Scarascia Mugnozza, G. (2010). Research and development of advanced technologies for landslide hazard analysis in Italy. Landslides, 7(3), 381–385. doi:10.1007/s10346-010-0208-x.

    Article  Google Scholar 

  • Buckley, S. J., Howell, J. A., Enge, H. D., & Kurz, T. H. (2008). Terrestrial laser scanning in geology: Data acquisition, processing and accuracy considerations. Journal of the Geological Society London, 165, 625–638.

    Article  Google Scholar 

  • Budzier, H., & Garlach, G. (2011). Thermal infrared sensors, Theory, Optimization and Practice (p. 302). Chichester, UK: Wiley.

    Book  Google Scholar 

  • Chilovi, C., De Feyter, A. J., & Pompucci, A. (2000). Wrench zone reactivation in the Adriatic Block: The example of the Mattinata fault system (SE Italy). Bollettino della Società Geologica Italiana, 119, 3–8.

    Google Scholar 

  • Fell, R. (1994). Landslide risk assessment and acceptable risk. Canadian Geotechnical Journal, 31, 261–272.

    Article  Google Scholar 

  • Ferretti, A., Monti Guarnieri, A., Prati, C., Rocca, F., & Massonet, D. (2007). InSAR principles: Guideline for SAR interferometry processing and interpretation (Vol. TM-19). Noordwijk, The Netherlands: ESA Publication.

    Google Scholar 

  • Fröhlich, C., & Mettenleiter, M. (2004). Terrestrial laser scanning—New perspectives in 3D surveying. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 26(8), W2.

    Google Scholar 

  • Gambini, R., & Tozzi, M. (1996). Tertiary geodynamic evolution of the Southern Adria microplate. Terra Nova, 8, 593–602.

    Article  Google Scholar 

  • Gaussorgues, G. (1994). Infrared thermography. Microwave technology (Vol. 5). London: Chapman & Hall.

    Book  Google Scholar 

  • Hatheway, H. W. (2009). The complete ISRM suggested methods for rock characterization, testing and monitoring. 1974–2006. Environmental and Engineering Geoscience, 15(1), 47–48. doi:10.2113/gseegeosci.15.1.47.

    Article  Google Scholar 

  • Heritage, G. L., & Large, A. R. G. (2009). Laser scanning for the environmental sciences (p. 302). Chichester, UK: Wiley.

    Book  Google Scholar 

  • Hungr, O., & Evans, S. G. (1989). Engineering aspects of rockfall hazard in Canada. Geological Survey of Canada, Open File, 2061, 102.

    Google Scholar 

  • Kemeny, J., Turner, K., & Norton, B. (2006). LIDAR for rock mass characterization: Hardware, software, accuracy and best-practices. In F. Tonon & J. Kottenstette (Eds.), Laser and photogrammetric methods for rock face characterization (pp. 49–62). Alexandria, Egypt: ARMA.

    Google Scholar 

  • Longoni, L., Arosio, D., Scaioni, M., Papini, M., Zanzi, L., Roncella, R., & Brambilla, D. (2012). Surface and subsurface non-invasive investigations to improve the characterization of a fractured rock mass. Journal of Geophysics and Engineering, 9, 461–472.

    Article  Google Scholar 

  • Martino, S., & Mazzanti, P. (2014). Integrating geomechanical surveys and remote sensing for sea cliff slope stability analysis: The Mt. Pucci case study (Italy). Natural Hazards Earth System Science, 14, 831–848. doi:10.5194/nhess-14-831-2014.

    Article  Google Scholar 

  • Massonnet, D., & Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth’s surface. Reviews of Geophysics, 36, 441–500.

    Article  Google Scholar 

  • Mazzanti, P. (2011). Displacement monitoring by terrestrial SAR interferometry for geotechnical purposes. Geotechnical instrumentation news, 29(2), 25–28.

    Google Scholar 

  • Mazzanti, P. & Brunetti, A. (2010). Assessing rock fall susceptibility by terrestrial SAR interferometry. In Proceedings of the ‘Mountain Risks International Conference’ (pp. 109–114), Firenze, Italy, November 24–26, 2010.

    Google Scholar 

  • Monserrat, O., Crosetto, M., & Luzi, G. (2014). A review of ground-based SAR interferometry for deformation measurement. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 40–48.

    Article  Google Scholar 

  • Morsilli, M. (1998). Stratigrafia e sedimentologia del margine della Piattaforma Apula nel Gargano (Giurassico superiore-Cretaceo inferiore) (p. 203). PhD dissertation. Italy: Università di Bologna (in Italian).

    Google Scholar 

  • Oppikofer, T., Jaboyedoff, M., & Keusen, H. R. (2008). Collapse at the eastern Eiger flank in the Swiss Alps. Nature Geoscience, 1(8), 531–535.

    Article  Google Scholar 

  • Palmstrom, A. (1982). The volumetric joint count—A useful and simple measure of the degree of jointing. In Proceedings of the 4th International Congress IAEG, New Delhi, India (pp. 221–228).

    Google Scholar 

  • Palmstrom, A. (1985). Application of the volumetric joint count as a measure of rock mass jointing. In Proceedings of the International Symposium on ‘Fundamentals of Rock Joints’, Bjorkliden, Sweden (pp. 103–110).

    Google Scholar 

  • Palmstrom, A. (1986). A general practical method for identification of rock masses to be applied in evaluation of rock mass stability conditions and TBM boring progress. In Proceedings of the Conference on ‘Fjellsprengingsteknikk, Bergmekanikk, Geoteknikk’, Oslo, Norway, paper No. 31 (pp. 1–31).

    Google Scholar 

  • Palmstrom, A. (1996). RMi—A system for characterizing rock mass strength for use in rock engineering. Journal of Rock Mechanics and Tunneling Technology, 1(2), 69–108.

    Google Scholar 

  • Riquelme, A., Abellán, A., Tomás, R., & Jaboyedoff, M. (2014). A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Computers & Geosciences, 68, 38–52.

    Article  Google Scholar 

  • Scaioni, M., Roncella, R., & Alba, M. I. (2013). Change detection and deformation analysis in point clouds: Application to rock face monitoring. Photogrammetric Engineering & Remote Sensing, 79(5), 441–456.

    Article  Google Scholar 

  • Sen, Z., & Eissa, E. A. (1992). Rock quality charts for long—Normally distributed block size. International Journal of Rock Mechanics, Mining Sciences and Geomechanics, 29(1), 1–12.

    Article  Google Scholar 

  • Shan, J., & Toth, C. K. (2009). Topographic laser scanning and ranging. Principles and processing. Boca Raton, FL, USA: Taylor & Francis Group.

    Google Scholar 

  • Speranza, F., & Kissel, C. (1993). First paleomagnetism of Eocene rocks from Gargano: Widespread overprint or non rotation? Geophysical Research Letters, 20, 2627–2630.

    Article  Google Scholar 

  • Squarzoni, C., Calgaro, A., Teza, G., Acosta, C. A. T., Pernito, M. A. & Bucceri, N. (2008). Terrestrial laser scanning and infrared thermography in rock fall prone slope analysis. Geophysical Research Abstracts 2008, Vol. 10, abstract No. EGU2008-A-09254.

    Google Scholar 

  • Sturzenegger, M., & Stead, D. (2009). Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques. Natural Hazards Earth System Science, 9, 267–287.

    Article  Google Scholar 

  • Vollmer, M., & Müllmann, K. P. (2010). Infrared thermal imaging. Fundamental research and applications (p. 593). Weinheim, Germany: Wiley-VCH Verlag.

    Book  Google Scholar 

  • Vosselman, G., & Maas, H. G. (2010). Airborne and terrestrial laser scanning. Boca Raton, FL, USA: Taylor & Francis Group.

    Google Scholar 

  • Wehr, A., & Lohr, U. (1999). Airborne laser scanning—An introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 68–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Mazzanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mazzanti, P., Brunetti, A., Bretschneider, A. (2015). A New Approach Based on Terrestrial Remote-sensing Techniques for Rock Fall Hazard Assessment. In: Scaioni, M. (eds) Modern Technologies for Landslide Monitoring and Prediction. Springer Natural Hazards. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45931-7_4

Download citation

Publish with us

Policies and ethics