Skip to main content

Monitoring Landslide Activities in the Three Gorges Area with Multi-frequency Satellite SAR Data Sets

  • Chapter
  • First Online:

Part of the book series: Springer Natural Hazards ((SPRINGERNAT))

Abstract

Thousands of landslides are distributed along Yangtze River and its tributaries in the Three Gorges area from Chongqing Municipality in the west to Hubei Province in the east (P.R. China). Since the construction and regular operation of the Three Gorges Dam in the past two decades, many ancient landslides have been reactivated and some new landslides were formed along with the unprecedentedly huge water-level changes. Monitoring landslide activities has then been considered as a high-priority task for geological disaster prevention and management in the reservoir area, while traditional monitoring methods can hardly meet the requirements. In this chapter, we investigated the applications of several methods using Synthetic Aperture Radar (SAR) datasets in landslide monitoring in the Three Gorges area. Multifrequency satellite SAR data sets acquired by ENVISAT/ASAR, ALOS/PALSAR, and TerraSAR-X from different orbits were analyzed to retrieve historic deformations of a few typical landslides. The experimental results suggested that SAR Interferometry (InSAR) methods can be effectively used to monitor slow-moving landslides, while pixel offset tracking method is more suitable for detecting deformation of fast-moving landslides. Furthermore, qualitative correlation analyses indicated that variation of reservoir water level, particularly the rapid water-level decrease due to discharge, should be identified as a key driving factor for landslide deformation in the Three Gorges area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Angeli, M.-G., Pasuto, A., & Silvano, S. (2000). A critical review of landslide monitoring experiences. Engineering Geology, 55, 133–147.

    Article  Google Scholar 

  • Barazzetti, L., Gianinetto, M., & Scaioni, M. (2014). A new approach to satellite time series co-registration for landslide monitoring. In M. Scaioni (Ed.), Moderns technologies for landslide investigation and prediction (pp. 233–249). Berlin: Springer.

    Google Scholar 

  • Berardino, P., Costantini, M., Franceschetti, G., Iodice, A., Pietranera, L., & Rizzo, V. (2003). Use of differential SAR interferometry in monitoring and modelling large slope instability at Maratea (Basilicata, Italy). Engineering Geology, 68, 31–51.

    Article  Google Scholar 

  • Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40, 2375–2383.

    Article  Google Scholar 

  • Cascini, L., Fornaro, G., & Peduto, D. (2009). Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide-affected areas. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 598–611.

    Article  Google Scholar 

  • Cascini, L., Fornaro, G., & Peduto, D. (2010). Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Engineering Geology, 112, 29–42.

    Article  Google Scholar 

  • Casu, F., Manconi, A., Pepe, A., & Lanari, R. (2011). Deformation time-series generation in areas characterized by large displacement dynamics: The SAR amplitude pixel-offset SBAS technique. IEEE Transactions on Geoscience and Remote Sensing, 49, 2752–2763.

    Article  Google Scholar 

  • Cojean, R., & Caï, Y. J. (2011). Analysis and modeling of slope stability in the Three-Gorges Dam reservoir (China)—The case of Huangtupo landslide. Journal of Mountain Science, 8, 166–175.

    Article  Google Scholar 

  • Costantino, D., & Angelini, M. G. (2011). Geodetic monitoring applied to a mine area. Applied Geomatics, 3, 61–74.

    Article  Google Scholar 

  • Crosetto, M., Crippa, B., Biescas, E., Monserrat, O., Agudo, M., & Fernández, P. (2005). State-of-the-art of land deformation monitoring using SAR interferometry. Photogrammetrie Fernerkundung Geoinformation, 6, 497–510.

    Google Scholar 

  • Debella-Gilo, M., & Kääb, A. (2012). Measurement of surface displacement and deformation of mass movements using least squares matching of repeat high resolution satellite and aerial images. Remote Sensing, 4, 43–67.

    Article  Google Scholar 

  • Delacourt, C., Allemand, P., Berthier, E., Raucoules, D., Casson, B., Grandjean, P., et al. (2007). Remote-sensing techniques for analysing landslide kinematics: A review. Bulletin de la Société Géologique de France, 178, 89–100.

    Article  Google Scholar 

  • Fastellini, G., Radicioni, F., & Stoppini, A. (2011). The Assisi landslide monitoring: a multi-year activity based on geomatic techniques. Applied Geomatics, 3, 91–100.

    Article  Google Scholar 

  • Ferretti, A., Prati, C., & Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38, 2202–2212.

    Article  Google Scholar 

  • Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39, 8–20.

    Article  Google Scholar 

  • Ferretti, A., Monti-Guarnieri, A., Prati, C., Rocca, F., & Massonet, D. (2007). InSAR principles: Guideline for SAR interferometry processing and interpretation. The Netherlands, Noordwijk: ESA Publication. TM-19.

    Google Scholar 

  • Fornaro, G., Atzori, S., Calo, F., Reale, D., & Salvi, S. (2012). Inversion of wrapped differential interferometric SAR data for fault dislocation modeling. IEEE Transactions on Geoscience and Remote Sensing, 50, 2175–2184.

    Article  Google Scholar 

  • Fourniadis, I. G., Liu, J. G., & Mason, P. J. (2007). Landslide hazard assessment in the Three Gorges area, China, using ASTER imagery: Wushan-Badong. Geomorphology, 84, 126–144.

    Article  Google Scholar 

  • Fruneau, B., Achache, J., & Delacourt, C. (1996). Observation and modelling of the Saint-Étienne-de-Tinée landslide using SAR interferometry. Tectonophysics, 265, 181–190.

    Article  Google Scholar 

  • Grün, A. (2012). Development and status of image matching in photogrammetry. The Photogrammetric Record, 27, 36–57.

    Article  Google Scholar 

  • Handwerger, A. L., Roering, J. J., & Schmidt, D. A. (2013). Controls on the seasonal deformation of slow-moving landslides. Earth and Planetary Science Letters, 377–378, 239–247.

    Article  Google Scholar 

  • Hanssen, R. F. (2001). Radar interferometry: Data interpretation and error analysis. Berlin: Springer.

    Book  Google Scholar 

  • Herrera, G., Gutiérrez, F., García-Davalillo, J. C., Guerrero, J., Notti, D., Galve, J. P., et al. (2013). Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees). Remote Sensing of Environment, 128, 31–43.

    Article  Google Scholar 

  • Hilley, G. E., Bürgmann, R., Ferretti, A., Novali, F., & Rocca, F. (2004). Dynamics of slow-moving landslides from permanent scatterer analysis. Science, 304, 1952–1955.

    Article  Google Scholar 

  • Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2007). GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more. Berlin: Springer.

    Google Scholar 

  • Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters 31, paper no. L23611.

    Google Scholar 

  • Hu, X., Wang, T., & Liao, M. (2014). Measuring coseismic displacements with point-like targets offset tracking. IEEE Geoscience and Remote Sensing Letters, 11, 283–287.

    Article  Google Scholar 

  • Jackson, S., & Sleigh, A. (2000). Resettlement for China’s Three Gorges Dam: Socio-economic impact and institutional tensions. Communist and Post-Communist Studies, 33, 223–241.

    Article  Google Scholar 

  • Lanari, R., Mora, O., Manunta, M., Mallorqui, J. J., Berardino, P., & Sansosti, E. (2004). A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 42, 1377–1386.

    Article  Google Scholar 

  • Li, D., Yin, K., & Leo, C. (2010). Analysis of Baishuihe landslide influenced by the effects of reservoir water and rainfall. Environmental Earth Sciences, 60, 677–687.

    Article  Google Scholar 

  • Li, X., Muller, J., Fang, C., & Zhang, Y. (2011). Measuring displacement field from TerraSAR-X amplitude images by subpixel correlation: An application to the landslide in Shuping, Three Gorges Area. Acta Petrologica Sinica, 27, 3843–3850.

    Google Scholar 

  • Liao, M. S., Tang, J., Wang, T., Balz, T., & Zhang, L. (2012). Landslide monitoring with high-resolution SAR data in the Three Gorges region. Science China Earth Sciences, 55(4), 590–601.

    Article  Google Scholar 

  • Liu, J. G., Mason, P. J., Clerici, N., Chen, S., Davis, A., Miao, F., et al. (2004). Landslide hazard assessment in the Three Gorges area of the Yangtze river using ASTER imagery: Zigui-Badong. Geomorphology, 61, 171–187.

    Article  Google Scholar 

  • Liu, P., Li, Z., Hoey, T., Kincal, C., Zhang, J., Zeng, Q., & Muller, J.-P. (2013). Using advanced InSAR time series techniques to monitor landslide movements in Badong of the Three Gorges region, China. International Journal of Applied Earth Observation and Geoinformation, 21, 253–264.

    Article  Google Scholar 

  • Mei, B., Xu, Y., & Zhang, Y. (2013). P- and S-velocity structure beneath the Three Gorges region (central China) from local earthquake tomography. Geophysical Journal International, 193, 1035–1049.

    Article  Google Scholar 

  • Miao, H., Wang, G., Yin, K., Kamai, T., & Li, Y. (2014). Mechanism of the slow-moving landslides in Jurassic red-strata in the Three Gorges Reservoir, China. Engineering Geology, 171, 59–69.

    Article  Google Scholar 

  • Nagler, T., Rott, H., & Kamelger, A. (2002). Analysis of landslides in Alpine areas by means of SAR interferometry. In Proceedings of IEEE Geoscience and Remote Sensing Symposium, IGARSS ’02 (pp 198-200). Toronto, June 24–28, 2002.

    Google Scholar 

  • Nichol, J. E., Shaker, A., & Wong, M.-S. (2006). Application of high-resolution stereo satellite images to detailed landslide hazard assessment. Geomorphology, 76, 68–75.

    Article  Google Scholar 

  • Peng, L., Niu, R., Huang, B., Wu, X., Zhao, Y., & Ye, R. (2014). Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area, China. Geomorphology, 204, 287–301.

    Article  Google Scholar 

  • Perissin, D., & Wang, T. (2011). Time-series InSAR applications over urban areas in China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4, 92–100.

    Article  Google Scholar 

  • Perissin, D., & Wang, T. (2012). Repeat-pass SAR interferometry with partially coherent targets. IEEE Transactions on Geoscience and Remote Sensing, 50, 271–280.

    Article  Google Scholar 

  • Pingue, F., Tammaro, U., Obrizzo, F., & Serio, C. (2013). Vertical ground movements in the Colli Albani area (central Italy) from recent precise levelling. Applied Geomatics, 5, 203–214.

    Article  Google Scholar 

  • Pirotti, F., Guarnieri, A., Masiero, A., Gregoretti, C., Degetto, M., & Vettore, A. (2014). Micro-scale landslide displacements detection using Bayesian methods applied to GNSS data. In M. Scaioni (Ed.), Modern Technologies for landslide investigation and prediction (pp. 123–138). Berlin Heidelberg: Springer.

    Google Scholar 

  • Plateau, T. (2006). Three Gorges Dam: Into the unknown. Science, 25, 1034.

    Google Scholar 

  • Rizo, V., & Tesauro, M. (2000). SAR interferometry and field data of Randazzo landslide (Eastern Sicily, Italy). Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25, 771–780.

    Article  Google Scholar 

  • Raucoules, D., de Michele, M., Malet, J. P., & Ulrich, P. (2013). Time-variable 3D ground displacements from high-resolution synthetic aperture radar (SAR). Application to La Valette landslide (South French Alps). Remote Sensing of Environment, 139, 198–204.

    Article  Google Scholar 

  • Schubert, A., Faes, A., Kääb, A., & Meier, E. (2013). Glacier surface velocity estimation using repeat TerraSAR-X images: Wavelet-vs. correlation-based image matching. ISPRS Journal of Photogrammetry and Remote Sensing, 82, 49–62.

    Article  Google Scholar 

  • Schofield, W., & Breach, M. (2007). Engineering Surveying (6th ed.). Oxford: Butterworth-Heinemann.

    Google Scholar 

  • Shi, X., Liao, M., Wang, T., Zhang, L., Shan, W., & Wang, C. (2014). Express way deformation mapping using high-resolution TerraSAR-X images. Remote Sensing Letters, 5, 194–203.

    Article  Google Scholar 

  • Tantianuparp, P., Shi, X., Zhang, L., Balz, T., & Liao, M. (2013). Characterization of landslide deformations in Three Gorges area using multiple InSAR data stacks. Remote Sensing, 5, 2704–2719.

    Article  Google Scholar 

  • Travelletti, J., Delacourt, C., Allemand, P., Malet, J. P., Schmittbuhl, J., Toussaint, R., & Bastard, M. (2012). Correlation of multi-temporal ground-based optical images for landslide monitoring: Application, potential and limitations. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 39–55.

    Article  Google Scholar 

  • Wasowski, J., & Bovenga, F. (2014). Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Engineering Geology, 174, 103–138.

    Article  Google Scholar 

  • Wang, F., Zhang, Y., Huo, Z., Peng, X., Araiba, K., & Wang, G. (2008a). Movement of the Shuping landslide in the first four years after the initial impoundment of the Three Gorges Dam Reservoir, China. Landslides, 5, 321–329.

    Article  Google Scholar 

  • Wang, F., Zhang, Y., Huo, Z., Peng, X., Wang, S., & Yamasaki, S. (2008b). Mechanism for the rapid motion of the Qianjiangping landslide during reactivation by the first impoundment of the Three Gorges Dam reservoir, China. Landslides, 5, 379–386.

    Article  Google Scholar 

  • Xia, Y., Kaufmann, H., & Guo, X. (2002). Differential SAR interferometry using corner reflectors. In Proceedings of IEEE Geoscience and Remote Sensing Symposium, IGARSS ’02 (pp. 1243–1246). Toronto, June 24–28, 2002.

    Google Scholar 

  • Xia, Y., Kaufmann, H., & Guo, X. (2004). Landslide monitoring in the Three Gorges area using D-InSAR and corner reflectors. Photogrammetric engineering and remote sensing, 70, 1167–1172.

    Article  Google Scholar 

  • Ye, X., Kaufmann, H., & Guo, X. (2004). Landslide monitoring in the Three Gorges area using D-InSAR and corner reflectors. Photogrammetric Engineering and Remote Sensing, 70, 1167–1172.

    Article  Google Scholar 

  • Yin, Y., Wang, H., Gao, Y., & Li, X. (2010). Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three Gorges Reservoir, China. Landslides, 7, 339–349.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Basic Research Program of China (Grant Nos. 2013CB733205 and 2013CB733204), the National Natural Science Foundation of China (Grant Nos. 41271457, 61331016, and 41021061), and the Major Research Program of the Three Gorges Region Geologic Disaster Protection (Grant No. SXKY3-6-4). The authors thank ESA for providing ENVISAT/ASAR data through the Dragon-3 program (id 10569), JAXA for providing ALOS/PALSAR data through ALOS RA3 scientific research projects (PI520 and PI547), and DLR for providing TerraSAR-X data through TerraSAR-X AO project (GEO0606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, L., Liao, M., Balz, T., Shi, X., Jiang, Y. (2015). Monitoring Landslide Activities in the Three Gorges Area with Multi-frequency Satellite SAR Data Sets. In: Scaioni, M. (eds) Modern Technologies for Landslide Monitoring and Prediction. Springer Natural Hazards. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45931-7_10

Download citation

Publish with us

Policies and ethics