Skip to main content

A Method of Density Analysis for Chinese Characters

  • Conference paper
Book cover Natural Language Processing and Chinese Computing (NLPCC 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 496))

Abstract

Density analysis plays an important role in font design and recognition. This paper presents a method of density analysis for Chinese characters. A number of density metrics are adopted to describe the density degree of a character from both local and global perspectives, including center-to-center distance of connected components, gap between connected components, ratio of perimeter and area, connected components area ratio, and area ratio of holes. The experiment results demonstrate that the proposed method is effective in measuring the density of Chinese characters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schomaker, L., de Leau, E., Vuurpijl, L.: Using Pen-Based Outlines for Object-Based Annotation and Image-Based Queries. In: Huijsmans, D.P., Smeulders, A.W.M. (eds.) VISUAL 1999. LNCS, vol. 1614, pp. 585–592. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Song, J.-G., Lu, X.-Q., et al.: Envelope Extraction for Composite Shapes for Shape Retrieval. In: Proceedings of the Internationnal Conference on Pattern Recognition, Tsukuba Science City, Japan, pp. 1932–1935 (2012)

    Google Scholar 

  3. Bribiesca, E.: An Easy Measure of Compactness for 2D and 3D Shapes. Pattern Recognition 41, 543–554 (2008)

    Article  Google Scholar 

  4. Soffer, A., Samet, H.: Negative Shape Features for Image Databases Consisting of Geographic Symbols. In: 3rd International Workshop on Visual Form Capri (1997)

    Google Scholar 

  5. Rosenfeld, A., Pfaltz, J.L.: Distance Functions on Digital Pictures. Pattern Recognition 1(1), 33–61 (1968)

    Article  MathSciNet  Google Scholar 

  6. Haralick, R.M.: A Measure for Circularity of Digital Figures. IEEE Trans. Syst. Man Cybernet 4(4), 394–396 (1997)

    Article  Google Scholar 

  7. Hu, R.-X.: A Perceptually Motivated Morphological Strategy for Shape Retrieval. In: Huang, D.-S., Gan, Y., Gupta, P., Gromiha, M.M. (eds.) ICIC 2011. LNCS, vol. 6839, pp. 105–111. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Liu, L., Lu, Y., et al.: Near-duplicate Document Image Matching: a Graphical Perspective. Pattern Recognition (2013)

    Google Scholar 

  9. Bai, X., Yang, X.W., et al.: Learning Context-sensitive Shape Similarity by Graph Transduction. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(5) (2010)

    Google Scholar 

  10. Liu, H., Feng, S.Q., Zha, H.B., et al.: Document Image Retrieval Based on Density Distribution Feature and Key Block Feature. In: Proceedings of International Conference on Document Analysis and Recognition, pp. 1040–1044 (2005)

    Google Scholar 

  11. Liu, H.M., Wang, Z.H.: PLDD: Point-lines Distance Distribution for Detection of Arbitrary Triangles, Regular Polygons and Circles. J. Vis. Commun. Image R (2013)

    Google Scholar 

  12. Belongie, S., Malik, J., Puzicha, J.: Shape Matching and Object Recognition Using Shape Context. IEEE Transactions Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)

    Article  Google Scholar 

  13. Ling, H.B., Jacobs, D.W.: Shape Classification Using the Inner-distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(2), 286–299 (2007)

    Article  Google Scholar 

  14. Guru, D.S., Nagendraswamy, H.S.: Symbolic Representation of Two-dimensional Shapes. Pattern Recognition 28, 144–155 (2007)

    Article  Google Scholar 

  15. Siddiqi, K., Shokoufandeh, A., Dickinson, S.J., Zucker, S.W.: Shock Graphs and Shape Matching. International Journal of Computer Vision 35(1), 13–32 (1999)

    Article  Google Scholar 

  16. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of Shapes by Editing Shock Graphs. In: IEEE International Conference on Computer Vision, pp. 755–762 (2001)

    Google Scholar 

  17. Shi, C., Xiao, J., Jia, W., Xu, C.: Automatic generation of chinese character based on human vision and prior knowledge of calligraphy. In: Zhou, M., Zhou, G., Zhao, D., Liu, Q., Zou, L., et al. (eds.) NLPCC 2012. CCIS, vol. 333, pp. 23–33. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Marr, D., Vision, A.: A Computational Investigation into the Human Representation and Processing of Visual Information. Freeman and Company, WH San Francisco (1982)

    Google Scholar 

  19. Lai, P.K., Pong, M.C., Yeung, D.Y.: Chinese Glyph Generation Using Character Composition and Beauty Evaluation Metrics. In: International Conference on Computer Processing of Oriental Languages (ICCPOL), Honolulu, Hawaii, pp. 92–99 (1995)

    Google Scholar 

  20. Yu, K., Wu, J., Zhuang, Y.: Skeleton-based Recognition of Chinese Calligraphic Character Image. In: Huang, Y.-M.R., Xu, C., Cheng, K.-S., Yang, J.-F.K., Swamy, M.N.S., Li, S., Ding, J.-W. (eds.) PCM 2008. LNCS, vol. 5353, pp. 228–237. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Bribiesca, E.: Measuring 2-D Shape Compactness Using the Contact Perimeter. Computers & Mathematics with Applications 33(11), 1–9 (1997)

    Article  MathSciNet  Google Scholar 

  22. Bribiesca, E.: A Measure of Compactness for 3D Shapes. Computers & Mathematics with Applications 40(10), 1275–1284 (2000)

    Article  MathSciNet  Google Scholar 

  23. Bogaert, J., Rousseau, R., Van Hecke, P., et al.: Alternative Area-perimeter Ratios for Measurement of 2D Shape Compactness of Habitats. Applied Mathematics and Computation 111(1), 71–85 (2000)

    Article  MathSciNet  Google Scholar 

  24. Del Bimbo, A., Pala, P.: Image Indexing Using Shape-based Visual Features. In: Proceedings of the 13th International Conference on Pattern Recognition, vol. 3, pp. 351–355. IEEE (1996)

    Google Scholar 

  25. Herrmann, P., Schlageter, G.: Retrieval of Document Images Using Layout Knowledge. In: Proceedings of the Second International Conference on Document Analysis and Recognition, pp. 537–540. IEEE (1993)

    Google Scholar 

  26. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using Matlab. Princeton Hall Pearson Education Inc., New Jersey (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qu, J., Lu, X., Liu, L., Tang, Z., Wang, Y. (2014). A Method of Density Analysis for Chinese Characters. In: Zong, C., Nie, JY., Zhao, D., Feng, Y. (eds) Natural Language Processing and Chinese Computing. NLPCC 2014. Communications in Computer and Information Science, vol 496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45924-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45924-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45923-2

  • Online ISBN: 978-3-662-45924-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics