Skip to main content

A Short Texts Matching Method Using Shallow Features and Deep Features

  • Conference paper
Natural Language Processing and Chinese Computing (NLPCC 2014)

Abstract

Semantic matching is widely used in many natural language processing tasks. In this paper, we focus on the semantic matching between short texts and design a model to generate deep features, which describe the semantic relevance between short “text object”. Furthermore, we design a method to combine shallow features of short texts (i.e., LSI, VSM and some other handcraft features) with deep features of short texts (i.e., word embedding matching of short text). Finally, a ranking model (i.e., RankSVM) is used to make the final judgment. In order to evaluate our method, we implement our method on the task of matching posts and responses. Results of experiments show that our method achieves the state-of-the-art performance by using shallow features and deep features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mnih, A., Hinton, G.: Three new graphical models for statistical language modelling. In: International Conference on Machine Learning, ICML (2007)

    Google Scholar 

  2. Leuski, A., Traum, D.R.: Npceditor: Creating virtual human dialogue using information retrieval techniques. AI Magazine 32(2), 42–56 (2011)

    Article  Google Scholar 

  3. Wang, H., Lu, Z., Li, H., Chen, E.: A dataset for research on short-text conversations. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, EMNLP 2013, pp. 935–945 (2013)

    Google Scholar 

  4. Williams, J.D., Young, S.: Partially observable markov decision processes for spoken dialog systems. Comput. Speech Lang. 21(2), 393–422 (2007)

    Article  Google Scholar 

  5. Schatzmann, J., Weilhammer, K., Stuttle, M., Young, S.: A survey of statistical user simulation techniques for reinforcement-learning of dialogue management strategies. Knowl. Eng. Rev., 97–126 (2006)

    Google Scholar 

  6. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

    Google Scholar 

  7. Mikolov, T., Le, Q.V., Sutskever, I.: Exploiting similarities among languages for machine translation. CoRR, abs/1309.4168 (2013)

    Google Scholar 

  8. Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep structured semantic models for web search using clickthrough data. In: Proceedings of the 22nd ACM International Conference on Conference on Information & Knowledge Management, pp. 2333–2338. ACM (2013)

    Google Scholar 

  9. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural Language Processing (Almost) from Scratch. Journal of Machine Learning Research (JMLR) 12, 2493–2537 (2011)

    MATH  Google Scholar 

  10. Jafarpour, S., Burges, C.J.C.: Filter, rank, and transfer the knowledge: Learning to chat (2010)

    Google Scholar 

  11. Socher, R., Huang, E.H., Pennington, J., Ng, A.Y.: Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In: Advances in Neural Information Processing Systems (2011)

    Google Scholar 

  12. Socher, R., Huang, E.H., Pennington, J., Ng, A.Y., Manning, C.D.: Semisupervised recursive autoencoders for predicting sentiment distributions. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (2011)

    Google Scholar 

  13. Misu, T., Georgila, K., Leuski, A., Traum, D.: Reinforcement learning of question-answering dialogue policies for virtual museum guides. In: Proceedings of the 13th Annual Meeting of the Special Interest Group on Discourse and Dialogue, SIGDIAL 2012, pp. 84–93 (2012)

    Google Scholar 

  14. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2002, pp. 133–142. ACM, New York (2002)

    Chapter  Google Scholar 

  15. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. Journal of Machine Learning Research (JMLR) 3, 1137–1155 (2003)

    MATH  Google Scholar 

  16. Lu, Z., Li, H.: A deep architecture for matching short texts. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26, pp. 1367–1375. Curran Associates, Inc. (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kang, L., Hu, B., Wu, X., Chen, Q., He, Y. (2014). A Short Texts Matching Method Using Shallow Features and Deep Features. In: Zong, C., Nie, JY., Zhao, D., Feng, Y. (eds) Natural Language Processing and Chinese Computing. NLPCC 2014. Communications in Computer and Information Science, vol 496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45924-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45924-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45923-2

  • Online ISBN: 978-3-662-45924-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics