Skip to main content

History of Modern Thermoelectrochemistry

  • Chapter
  • First Online:
  • 764 Accesses

Part of the book series: Monographs in Electrochemistry ((MOEC))

Abstract

Classical industrial processes like electrodeposition, galvanising, or electrochemical oxidation of materials are temperature dependent. Traditional processing takes place in open cells. Consequently, many “trivial” thermoelectrochemical investigations in open cells, at moderate temperature variation, have been described. The majority of such studies are dedicated to the improvement of efficiency [1–26]. Deposition of metals, among them copper [1, 2], zinc [3–5], nickel and its alloys [6, 7], chromium [8] and cobalt [9, 10] has been studied. Also electrochemical generation of oxide layers on zinc and on aluminium [4, 12] was subject of papers. Temperature dependence of less common phenomena, e.g., calcareous scaling [13], electrostimulated leaching of minerals [14, 15] or growth of nanocables [16] has been studied. Classical thermoelectrochemical experiments provided information about important partial processes as hydrogen electrosorption [17] or lithium ion intercalation into graphite [18]. Deposition processes have been investigated by means of the electrochemical quartz microbalance under temperature variation [19]. Uncommon electrode materials were single crystal platinum [20] and diamond electrodes [21], as well as paste electrodes made of graphite and ionic liquids [22]. Ionic liquids as solvents have been applied in open cells at moderate temperature variation [23, 24]. An interesting application of classical thermoelectrochemistry dealt with a process named electrodialysis [25].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cavalleri O, Kind H, Bittner AM, Kern K (1998) Langmuir 14:7292–7297

    CAS  Google Scholar 

  2. Nikolic ND, Pavlovic LJ, Pavlovic MG, Popov KI (2007) J Serbian Chem Soc 72:1369–1381

    CAS  Google Scholar 

  3. Yu JX, Wang L, Su L, Ai XP, Yang HX (2003) J Electrochem Soc 150:C19–C23

    CAS  Google Scholar 

  4. Goux A, Pauporte T, Chivot J, Lincot D (2005) Electrochim Acta 50:2239–2248

    CAS  Google Scholar 

  5. Zhang QB, Hua YX, Dong TG, Zhou DG (2009) J Appl Electrochem 39:1207–1216

    CAS  Google Scholar 

  6. Abou-Krisha MM, Assaf FH, El-Naby SA (2009) J Solid State Electrochem 13:879–885

    CAS  Google Scholar 

  7. Saitou M, Oshiro S, Hossain SMA (2008) J Appl Electrochem 38:309–313

    CAS  Google Scholar 

  8. Salvador BR, Jilberto PF, Marcelo JL, Jacqueline CS, Rodrigo EA (2008) J Chil Chem Soc 53:1429–1432

    Google Scholar 

  9. Garcia-Torres J, Valles E, Gomez E (2010) Electrochim Acta 55:5760–5767

    CAS  Google Scholar 

  10. Mendoza-Huizar LH, Rios-Reyes CH (2012) J Solid State Electrochem 16:2899–2906

    CAS  Google Scholar 

  11. Koh JL, Teh LK, Romanato F, Wong CC (2007) J Electrochem Soc 154:D300–D303

    CAS  Google Scholar 

  12. Aerts T, De Graeve I, Terryn H (2009) Electrochem Commun 11:2292–2295

    CAS  Google Scholar 

  13. Gabrielli C, Keddam M, Maurin G, Perrot H, Rosset R, Zidoune M (1996) J Electroanal Chem 412:189–193

    Google Scholar 

  14. Liu G, Tang ZY, Xu Q, Li CS (2008) J Inorg Mater 23:291–294

    CAS  Google Scholar 

  15. Khudolozhkin VO, Avchenko OV, Aleksandrov IA, Kuchma AS (2002) Geochem Int 40:1013–1020

    Google Scholar 

  16. Fu JL, Gao DQ, Xu Y, Xue D (2008) Electrochim Acta 53:5464–5468

    CAS  Google Scholar 

  17. Lukaszewski M, Hubkowska K, Czerwinski A (2011) J Electroanal Chem 651:131–142

    CAS  Google Scholar 

  18. Park G, Gunawardhana N, Nakamura H, Lee YS, Yoshio M (2012) J Power Sourc 199:293–299

    CAS  Google Scholar 

  19. Santos JS, Matos R, Trivinho-Strixino F, Pereira EC (2007) Electrochim Acta 53:644–649

    CAS  Google Scholar 

  20. Schmidt TJ, Ross PN, Markovic NM (2001) J Phys Chem B 105:12082–12086

    CAS  Google Scholar 

  21. Prado C, Wilkins SJ, Gründler P, Marken F, Compton RG (2003) Electroanalysis 15:1011–1016

    CAS  Google Scholar 

  22. Musameh MM, Kachoosangi RT, Compton RG (2008) Analyst 133:133–138

    CAS  Google Scholar 

  23. El Abedin SZ, Saad AY, Farag HK, Borisenko N, Liu QX, Endres F (2007) Electrochim Acta 52:2746–2754

    Google Scholar 

  24. Kondo H, Matsumiya M, Tsunashima K, Kodama S (2012) Electrochim Acta 66:313–319

    CAS  Google Scholar 

  25. Cifuentes L, Casas JM, Simpson J (2008) Chem Eng Sci 63:1117–1130

    CAS  Google Scholar 

  26. Aaboubi O, Housni A (2012) J Electroanal Chem 677:63–68

    Google Scholar 

  27. Hwang SS, Kim JS (2002) Corrosion 58:392–398

    CAS  Google Scholar 

  28. Galal A, Atta NF, Al-Hassan MHS (2005) Mater Chem Phys 89:28–37

    CAS  Google Scholar 

  29. Li DG, Zhou GS (2008) Acta Chim Sin 66:617–620

    CAS  Google Scholar 

  30. Nie XH, Li XG, Du CW, Cheng YF (2009) J Appl Electrochem 39:277–282

    CAS  Google Scholar 

  31. Shiratori K, Nobusada K (2008) J Phys Chem A 112:10681–10688

    CAS  Google Scholar 

  32. Smets N, Van Damme S, De Wilde D, Weyns G, Deconinck J (2008) J Appl Electrochem 38:551–560

    CAS  Google Scholar 

  33. Silkin SA, Pasinkovskii EA, Petrenko VI, Dikusar AI (2012) Surf Eng Appl Electrochem 48:1–10

    Google Scholar 

  34. Deconinck D, Van Damme S, Deconinck J (2012) Electrochim Acta 60:321–328

    CAS  Google Scholar 

  35. Mills EJ (1877) Proc Roy Soc London 26:504

    Google Scholar 

  36. Bouty E (1879) J Physique 8:289, 341

    Google Scholar 

  37. Lange E, König FO (1932) Elektrochemie der Phasengrenzen. In: Wien W, Harms F (eds) Handbuch der Experimentalphysik, vol 12-2. Akadem. Verlagsgesellschaft, Leipzig, pp 327–353

    Google Scholar 

  38. Debethune AJ, Licht TS, Swendeman N (1959) J Electrochem Soc 106:616–625

    CAS  Google Scholar 

  39. Salvi GR, Debethune AJ (1961) J Electrochem Soc 108:672–676

    CAS  Google Scholar 

  40. Garcia-Araez N, Climent V, Feliu JM (2012) Russ J Electrochem 48:271–280

    CAS  Google Scholar 

  41. Faita G, Longhi P, Mussini T (1967) J Electrochem Soc 114:340

    CAS  Google Scholar 

  42. Conway BE, Wilkinson DP (1993) Electrochim Acta 38:997–1013

    CAS  Google Scholar 

  43. Odukoya A, Naterer GF (2011) Int J Hydrogen Energy 36:11345–11352

    CAS  Google Scholar 

  44. Hills GJ, Payne R (1965) Trans Faraday Soc 61:326–349

    CAS  Google Scholar 

  45. Lopez-Perez G, Andreu R, Gonzalez-Arjona D, Calvente JJ, Molero M (2003) J Electroanal Chem 552:247–259

    CAS  Google Scholar 

  46. Damaskin BB (2006) Russ J Electrochem 42:615–619

    CAS  Google Scholar 

  47. Szabo K, Mika J (1991) Acta Chim Hung 128:195–205

    CAS  Google Scholar 

  48. Dinan T, Stimming U (1986) J Electrochem Soc 133:2662–2663

    CAS  Google Scholar 

  49. Hamelin A, Doubova L, Stoicoviciu L, Trasatti S (1988) J Electroanal Chem 244:133–145

    CAS  Google Scholar 

  50. Trasatti S (1991) Electrochim Acta 36:1657–1658

    Google Scholar 

  51. Silva F, Sottomayor MJ, Martins A (1993) J Electroanal Chem 360:199–210

    CAS  Google Scholar 

  52. Popov A, Dimitrov N, Naneva R, Vitanov T (1994) J Electroanal Chem 376:97–100

    CAS  Google Scholar 

  53. Kastening B, Hahn M, Kremeskotter J (1994) J Electroanal Chem 374:159–166

    CAS  Google Scholar 

  54. Kastening B, Hahn M, Rabanus B, Heins M, zumFelde U (1997) Electrochim Acta 42:2789–2799

    CAS  Google Scholar 

  55. Taniguchi M, Tashima D, Otsubo M (2007) 2007 Annual report conference on electrical insulation and dielectric phenomena, pp 396–399

    Google Scholar 

  56. Zhou WJ, Zhao DD, Xu MW, Xu CL, Li HL (2008) Electrochim Acta 53:7210–7219

    CAS  Google Scholar 

  57. Raleigh DO (1974) J Electrochem Soc 121:639–645

    CAS  Google Scholar 

  58. Lietzke MH, Stoughton RW (1963) J Phys Chem 67:2573

    CAS  Google Scholar 

  59. Wachter R, Barthel J (1971) Ber Bunsen Ges Phys Chem 75:1134

    Google Scholar 

  60. Barthel J, Gores HJ, Schmeer G (1979) Ber Bunsen Ges Phys Chem 83:911–920

    CAS  Google Scholar 

  61. Wachter R, Barthel J (1979) Ber Bunsen Ges Phys Chem 83:634–642

    CAS  Google Scholar 

  62. Barthel J, Stroder U, Iberl L, Hammer H (1982) Ber Bunsen Ges Phys Chem 86:636–645

    CAS  Google Scholar 

  63. Barthel J (1979) Ber Bunsen Ges Phys Chem 83:252–257

    CAS  Google Scholar 

  64. Barthel J, Gores HJ, Carlier P, Feuerlein F, Utz M (1983) Ber Bunsen Ges Phys Chem 87:436–443

    CAS  Google Scholar 

  65. Barthel J, Gerber R, Gores HJ (1984) Ber Bunsen Ges Phys Chem 88:616–622

    CAS  Google Scholar 

  66. Khokhlov VA, Smirnov MV (1979) J Appl Chem USSR 52:1454–1456

    Google Scholar 

  67. Nagy Z, Hung NC, Yonco RM (1989) J Electrochem Soc 136:895–896

    CAS  Google Scholar 

  68. Gosavi S, Gao YQ, Marcus RA (2001) J Electroanal Chem 500:71–77

    CAS  Google Scholar 

  69. Mostany J, Scharifker BR, Saavedra K, Borras C (2008) Russ J Electrochem 44:652–658

    CAS  Google Scholar 

  70. Wendt H, Plzak V (1983) Electrochim Acta 28:27–34

    CAS  Google Scholar 

  71. Schmidt TJ, Ross PN, Markovic NM (2002) J Electroanal Chem 524:252–260

    Google Scholar 

  72. Amadelli R, Maldotti A, Molinari A, Danilov FI, Velichenko AB (2002) J Electroanal Chem 534:1–12

    CAS  Google Scholar 

  73. Park SM, Ho S, Aruliah S, Weber MF, Ward CA, Venter RD, Srinivasan S (1986) J Electrochem Soc 133:1641–1649

    CAS  Google Scholar 

  74. Schmidt TJ, Stamenkovic V, Ross PN, Markovic NM (2003) PCCP 5:400–406

    CAS  Google Scholar 

  75. Zhang L, Song CJ, Zhang JJ, Wang HJ, Wilkinson DP (2005) J Electrochem Soc 152:A2421–A2426

    CAS  Google Scholar 

  76. Lee SK, Pyun SI, Lee SJ, Jung KN (2007) Electrochim Acta 53:740–751

    CAS  Google Scholar 

  77. Song C, Zhang L, Zhang J, Wilkinson DP, Baker R (2007) Fuel Cells 7:9–15

    CAS  Google Scholar 

  78. Dhar HP, Christner LG, Kush AK (1986) J Electroanal Chem 213:161–167

    CAS  Google Scholar 

  79. Jaszay T, Caprani A, Priem F, Frayret JP (1988) Electrochim Acta 33:1093–1100

    CAS  Google Scholar 

  80. Schmidt TJ, Grgur BN, Markovic NM, Rose PN (2001) J Electroanal Chem 500:36–43

    CAS  Google Scholar 

  81. Kardash D, Korzeniewski C, Markovic N (2001) J Electroanal Chem 500:518–523

    CAS  Google Scholar 

  82. Lei JL, Luo JL (2002) PCCP 4:1206–1210

    CAS  Google Scholar 

  83. Miller B, Chen AC (2005) Electrochim Acta 50:2203–2212

    CAS  Google Scholar 

  84. Suski L, Ruggiero M (1999) Electrochem Sol State Lett 2:579–582

    CAS  Google Scholar 

  85. Jiang JH, Kucernak AR (2001) Electrochim Acta 46:3445–3456

    CAS  Google Scholar 

  86. Grafov BM (2010) Russ J Electrochem 46:239–242

    CAS  Google Scholar 

  87. Churikov AV (2001) Russ J Electrochem 37:176–186

    CAS  Google Scholar 

  88. Bilal BA, Tributsch H (1998) J Appl Electrochem 28:1073–1081

    CAS  Google Scholar 

  89. Inzelt G, Lang G (1991) Electrochim Acta 36:1355–1361

    CAS  Google Scholar 

  90. Dubois D, Moninot G, Kutner W, Jones MT, Kadish KM (1992) J Phys Chem 96:7137–7145

    CAS  Google Scholar 

  91. Xu YH, Chen CP, Wang QD, Chen LX (2001) Int J Hydrogen Energy 26:1177–1181

    CAS  Google Scholar 

  92. Wang Y, Rogers EI, Compton RG (2010) J Electroanal Chem 648:15–19

    CAS  Google Scholar 

  93. Liu HJ, Xu Q, Yan CW, Cao YZ, Qiao YL (2011) Int J Electrochem Sci 6:3483–3496

    CAS  Google Scholar 

  94. Gu WB, Wang CY (2000) J Electrochem Soc 147:2910–2922

    CAS  Google Scholar 

  95. Kalu EE, Nwoga TT, Srinivasan V, Weidner JW (2001) J Power Sourc 92:163–167

    CAS  Google Scholar 

  96. Wu QD, Liu S, Li L, Yan TY, Gao XP (2009) J Power Sourc 186:521–527

    CAS  Google Scholar 

  97. Lu DS, Li WS, Tan CL, Huang QM (2011) Electrochim Acta 56:4540–4543

    CAS  Google Scholar 

  98. Shim J, Kostecki R, Richardson T, Song X, Striebel KA (2002) J Power Sourc 112:222–230

    CAS  Google Scholar 

  99. Somasundaram K, Birgersson E, Mujumdar AS (2012) J Power Sourc 203:84–96

    CAS  Google Scholar 

  100. Lanz P, Sommer H, Schulz-Dobrick M, Novak P (2013) Electrochim Acta 93:114–119

    CAS  Google Scholar 

  101. Yoon T, Park S, Mun J, Ryu JH, Choi W, Kang YS, Park JH, Oh SM (2012) J Power Sourc 215:312–316

    CAS  Google Scholar 

  102. Song LB, Li XH, Wang ZX, Xiong XH, Xiao ZL, Zhang F (2012) Int J Electrochem Sci 7:6571–6579

    CAS  Google Scholar 

  103. Feng XM, Ai XP, Yang HX (2004) Electrochem Commun 6:1021–1024

    CAS  Google Scholar 

  104. Huang Q, Yan MM, Jiang ZY (2006) J Power Sourc 156:541–546

    CAS  Google Scholar 

  105. Koltypin M, Aurbach D, Nazar L, Ellis B (2007) J Power Sourc 174:1241–1250

    CAS  Google Scholar 

  106. He XM, Pu WH, Ren JU, Wang L, Wang JL, Jiang CY, Wan CR (2008) Ionics 14:335–337

    CAS  Google Scholar 

  107. Huang H, Wang C, Zhang WK, Gan YP, Kang L (2008) J Power Sourc 184:583–588

    CAS  Google Scholar 

  108. Ku JH, Jung YS, Lee KT, Kim CH, Oh SM (2009) J Electrochem Soc 156:A688–A693

    CAS  Google Scholar 

  109. Maccario M, Croguennec L, Le Cras F, Delmas C (2008) J Power Sourc 183:411–417

    CAS  Google Scholar 

  110. Mun J, Jung YS, Yim T, Lee HY, Kim HJ, Kim YG, Oh SM (2009) J Power Sourc 194:1068–1074

    CAS  Google Scholar 

  111. Utsunomiya T, Hatozaki O, Yoshimoto N, Egashira M, Morita M (2011) J Power Sourc 196:8598–8603

    CAS  Google Scholar 

  112. Levi MD, Wang C, Aurbach D, Chvoj Z (2004) J Electroanal Chem 562:187–203

    CAS  Google Scholar 

  113. Silva F, Gomes C, Figueiredo M, Costa R, Martins A, Pereira CM (2008) J Electroanal Chem 622:153–160

    CAS  Google Scholar 

  114. Karthikeyan DK, Sikha G, White RE (2008) J Power Sourc 185:1398–1407

    CAS  Google Scholar 

  115. Lai W, Ciucci F (2010) Electrochim Acta 56:531–542

    CAS  Google Scholar 

  116. Novak P, Inganas O (1988) J Electrochem Soc 135:2485–2490

    CAS  Google Scholar 

  117. Mohamed NS, Arof AK (2004) J Power Sourc 132:229–234

    CAS  Google Scholar 

  118. Shajan XS (2012) Ionics 18:737–745

    Google Scholar 

  119. Matsumoto M, Uno T, Kubo M, Itoh T (2013) Ionics 19:615–622

    CAS  Google Scholar 

  120. Kotobuki M, Suzuki Y, Munakata H, Kanamura K, Sato Y, Yamamoto K, Yoshida T (2011) Electrochemistry 79:464–466

    CAS  Google Scholar 

  121. Mcbreen J, Ogrady WE, Richter R (1984) J Electrochem Soc 131:1215–1216

    CAS  Google Scholar 

  122. Burke LD, Hurley LM (2000) J Solid State Electrochem 4:353–362

    CAS  Google Scholar 

  123. Chen YX, Li MF, Liao LW, Xu J, Ye S (2009) Electrochem Commun 11:1434–1436

    CAS  Google Scholar 

  124. Mahapatra SS, Dutta A, Datta J (2010) Electrochim Acta 55:9097–9104

    CAS  Google Scholar 

  125. Guillen-Villafuerte O, Garcia G, Guil-Lopez R, Nieto E, Rodriguez JL, Fierro JLG, Pastor E (2013) J Power Sourc 231:163–172

    CAS  Google Scholar 

  126. Williams M, Horita T, Yamagi K, Sakai N, Yokokawa H (2009) J Fuel Cell Sci Technol 6

    Google Scholar 

  127. Lee CY, Huang RD (2012) Int J Hydrogen Energy 37:3459–3465

    CAS  Google Scholar 

  128. Dam VAT, de Bruijn FA (2007) J Electrochem Soc 154:B494–B499

    CAS  Google Scholar 

  129. Maranzana G, Lottin O, Colinart T, Chupin S, Didierjean S (2008) J Power Sourc 180:748–754

    CAS  Google Scholar 

  130. Lindstrom RW, Kortsdottir K, Wesselmark M, Oyarce A, Lagergren C, Lindbergh G (2010) J Electrochem Soc 157:B1795–B1801

    CAS  Google Scholar 

  131. Burheim O, Kjelstrup S, Pharoah JG, Vie PJS, Moller-Holst S (2011) Electrochim Acta 56:3248–3257

    CAS  Google Scholar 

  132. Thomas A, Maranzana G, Didierjean S, Dillet J, Lottin O (2013) J Electrochem Soc 160:F191–F204

    CAS  Google Scholar 

  133. Chiang LK, Liu HC, Shiu YH, Lee CH, Lee RY (2008) Renew Energy 33:2580–2588

    CAS  Google Scholar 

  134. Huang TJ, Huang MC (2008) J Power Sourc 175:473–481

    CAS  Google Scholar 

  135. Nicolella C, Reverberi AP, Carpanese P, Viviani M, Barbucci A (2008) J Fuel Cell Sci Technol 5

    Google Scholar 

  136. Wang XH, Huang H, Holme T, Tian X, Prinz FB (2008) J Power Sourc 175:75–81

    CAS  Google Scholar 

  137. Zheng F, Chen Y (2008) J Materials Sci 43:2058–2065

    CAS  Google Scholar 

  138. Shao L, Wang SR, Qian JQ, Xue YJ, Liu RZ (2011) Solid Oxide Fuel Cells 12 (Sofc Xii) 35:721–726

    CAS  Google Scholar 

  139. Ni M (2011) Int J Hydrogen Energy 36:3153–3166

    CAS  Google Scholar 

  140. Park J, Li PW, Bae J (2012) Int J Hydrogen Energy 37:8532–8555

    CAS  Google Scholar 

  141. Palcut M, Mikkelsen L, Neufeld K, Chen M, Knibbe R, Hendriksen PV (2012) Int J Hydrogen Energy 37:14501–14510

    CAS  Google Scholar 

  142. Pereira JRS, Rajesh S, Figueiredo FML, Marques FMB (2013) Electrochim Acta 90:71–79

    CAS  Google Scholar 

  143. Rohnke M, Falk M, Huber AK, Janek J (2013) J Power Sourc 221:97–107

    CAS  Google Scholar 

  144. Fletcher SI, Sillars FB, Carter RC, Cruden AJ, Mirzaeian M, Hudson NE, Parkinson JA, Hall PJ (2010) J Power Sourc 195:7484–7488

    CAS  Google Scholar 

  145. Wang JG, Yang Y, Huang ZH, Kang FY (2013) J Power Sourc 224:86–92

    CAS  Google Scholar 

  146. Tahar NB, Savall A (2009) Electrochim Acta 55:465–469

    Google Scholar 

  147. Tahar NB, Savall A (2011) J Appl Electrochem 41:983–989

    CAS  Google Scholar 

  148. Kulikova LN, Fateev VN, Rusanov VD (1998) Russ J Electrochem 34:306–309

    CAS  Google Scholar 

  149. Dall’Antonia LH, Tremiliosi-Filho G, Jerkiewicz G (2001) J Electroanal Chem 502:72–81

    Google Scholar 

  150. Sugimoto W, Ohta T, Yokoshima K, Takasu Y (2007) Electrochemistry 75:645–648

    CAS  Google Scholar 

  151. Kim DJ, Kwon HC, Kim HP (2008) Corrosion Sci 50:1221–1227

    CAS  Google Scholar 

  152. Finklea HO, Ravenscroft MS, Snider DA (1993) Langmuir 9:223–227

    CAS  Google Scholar 

  153. Han Y, Uosaki K (2008) Electrochim Acta 53:6196–6201

    CAS  Google Scholar 

  154. Kamat PV, Karkhanavala MD, Moorthy PN (1979) J Appl Phys 50:4228–4230

    CAS  Google Scholar 

  155. Dulal SMSI, Yun HJ, Shin CB, Kim CK (2007) Electrochim Acta 53:934–943

    CAS  Google Scholar 

  156. D’Ajello PCT, Pasa AA, Munford ML, Schervenski AQ (2008) Electrochim Acta 53:3156–3165

    Google Scholar 

  157. Inamdar AI, Mujawar SH, Barman SR, Bhosale PN, Patil PS (2008) Semicond Sci Technol 23:085013

    Google Scholar 

  158. Cabilio NR, Omanovic S, Roscoe SG (2000) Langmuir 16:8480–8488

    CAS  Google Scholar 

  159. Rhoten MC, Burgess JD, Hawkridge FM (2000) Electrochim Acta 45:2855–2860

    CAS  Google Scholar 

  160. Bak E, Donten M, Stojek Z (2008) Electrochem Commun 10:1074–1077

    CAS  Google Scholar 

  161. Stene S (1930) Rec Trav Chim Pays-Bas 49:1133–1145

    CAS  Google Scholar 

  162. Tsuruta T, Macdonald DD (1982) J Electrochem Soc 129:1221–1225

    CAS  Google Scholar 

  163. Ulmer GC, Manna MF, Grandstaff DE, Vicenzi EP, Barnes HL, Lvov SN, Zhou X, Ulyanov SM (2000) Appl Mineral 1 and 2:79–82

    Google Scholar 

  164. van Staveren DR, Bothe E, Weyhermuller T, Metzler-Nolte N (2001) Chem Commun 131–132

    Google Scholar 

  165. Fontanesi C, Andreoli R, Benedetti L, Giovanardi R, Ferrarini P (2003) Coll Czech Chem Commun 68:1407–1419

    CAS  Google Scholar 

  166. Zen JM, Hsu CT, Hsu YL, Sue JW, Conte ED (2004) Anal Chem 76:4251–4255

    CAS  Google Scholar 

  167. Streeter I, Giovanelli D, Wildgoose GG, Lawrence NS, Jiang L, Jones TGJ, Compton RG (2004) Electroanalysis 16:1205–1210

    CAS  Google Scholar 

  168. Yang GC, Yu LB, Jia JB, Zhao ZB (2012) J Solid State Electrochem 16:1363–1368

    CAS  Google Scholar 

  169. Berney H, West J, Haefele E, Alderman J, Lane W, Collins JK (2000) Sens Actuat B Chem 68:100–108

    CAS  Google Scholar 

  170. Cai CX, Ju HX, Chen HY (1995) Electrochim Acta 40:1109–1112

    CAS  Google Scholar 

  171. Liu XJ, Huang YX, Zhang WJ, Fan GF, Fan CH, Li GX (2005) Langmuir 21:375–378

    Google Scholar 

  172. Chandra A, Pandey RN, Srivastava ON, Prasad G (1991) Semicond Sci Technol 6:137–140

    CAS  Google Scholar 

  173. Salazar PF, Kumar S, Cola BA (2012) J Electrochem Soc 159:B483–B488

    CAS  Google Scholar 

  174. Styczynski S, Ciszewski A, Solopa W (2006) Przemysl Chemiczny 85:1234–1236

    CAS  Google Scholar 

  175. Licht S (2011) STEP (Solar Thermal Electrochemical Production) of energetic molecules: a synergy of photovoltaics and solar thermal to form a new, higher efficiency solar energy process

    Google Scholar 

  176. Licht S, Chitayat O, Bergmann H, Dick A, Ayub H, Ghosh S (2010) Int J Hydrogen Energy 35:10867–10882

    CAS  Google Scholar 

  177. Baltruschat H (2004) J Am Soc Mass Spectrom 15:1693–1706

    CAS  Google Scholar 

  178. Löffler T, Bussar R, Xiao X, Ernst S, Baltruschat H (2009) J Electroanal Chem 629:1–14

    Google Scholar 

  179. Chojak Halseid M, Jusys Z, Behm RJ (2010) J Electroanal Chem 644:103–109

    Google Scholar 

  180. Sun S, Heinen M, Jusys Z, Behm RJ (2012) J Power Sourc 204:1–13

    CAS  Google Scholar 

  181. Diao GW, Zhang ZX (1999) Chin J Anal Chem 27:732–736

    CAS  Google Scholar 

  182. Burstein GT, Moloney JJ (2004) Electrochem Commun 6:1037–1041

    CAS  Google Scholar 

  183. Wildgoose GG, Giovanelli D, Lawrence NS, Compton RG (2004) Electroanalysis 16:421–433

    CAS  Google Scholar 

  184. Zhang W, Charles EA, Congleton J (2004) Chem Res Chin Univ 20:494–500

    Google Scholar 

  185. Gründler P (2007) Chemical sensors. Springer, Berlin, pp 156–158

    Google Scholar 

  186. Fergus JW (2008) Sens Actuat B Chem 134:1034–1041

    CAS  Google Scholar 

  187. Chevallier L, Traversa E, Di Bartolomeo E (2010) J Electrochem Soc 157:J386–J391

    CAS  Google Scholar 

  188. Yang JC, Spirig JV, Karweik D, Routbort JL, Singh D, Dutta PK (2008) Sens Actuat B Chem 131:448–454

    CAS  Google Scholar 

  189. Ueda T, Okawa H, Takahashi S (2013) Electrochemistry 81:74–76

    CAS  Google Scholar 

  190. Yang JC, Dutta PK (2010) Sens Actuat B Chem 143:459–463

    CAS  Google Scholar 

  191. Matsumura H, Nakamura N, Yohda M, Ohno H (2007) Electrochem Commun 9:361–364

    CAS  Google Scholar 

  192. Scharifker BR, Zelenay P, Bockris JO (1987) J Electrochem Soc 134:2714–2725

    CAS  Google Scholar 

  193. Appleby AJ (1970) J Electrochem Soc 117:1159

    CAS  Google Scholar 

  194. Appleby AJ (1970) J Electrochem Soc 117:328

    CAS  Google Scholar 

  195. Borodzinski JJ, Galus Z (1982) J Electroanal Chem 135:221–241

    CAS  Google Scholar 

  196. Borodzinski JJ, Galus Z (1985) J Electroanal Chem 183:261–276

    CAS  Google Scholar 

  197. Sanchez S, Lambertin D, Cowache P, Picard GS, Fradejas MRB, Castrillejo Y (1999) High Temp Mater Process 3:91–103

    CAS  Google Scholar 

  198. Fastner U, Steck T, Pascual A, Fafilek G, Nauer GE (2008) J Alloys Comp 452:32–35

    CAS  Google Scholar 

  199. Hab AI (2007) Mater Sci 43:383–397

    CAS  Google Scholar 

  200. Elshina LA, Kudyakov VY, Malkov VB, Elshin AN (2008) Glass Phys Chem 34:617–622

    CAS  Google Scholar 

  201. Novoselova AV, Khokhlov VA, Shishkin VY (2001) Russ J Appl Chem 74:1672–1677

    CAS  Google Scholar 

  202. Novoselova AV, Khokhlov VA, Shishkin VY (2003) Russ J Phys Chem 77:S119–S124

    Google Scholar 

  203. Tian LF, Wen MF, Li LY, Chen J (2009) Electrochim Acta 54:7313–7317

    CAS  Google Scholar 

  204. Shkurankov A, Endres F, Freyland W (2002) Rev Sci Instrum 73:102–107

    CAS  Google Scholar 

  205. Macdonald DD, Scott AC, Wentrcek P (1979) J Electrochem Soc 126:908–911

    CAS  Google Scholar 

  206. Macdonald DD, Bartlett RW (1979) J Metals 31:127

    Google Scholar 

  207. Hettiarachchi S, Macdonald DD (1984) J Electrochem Soc 131:2206–2207

    CAS  Google Scholar 

  208. Hettiarachchi S, Kedzierzawski P, Macdonald DD (1985) J Electrochem Soc 132:1866–1870

    CAS  Google Scholar 

  209. Hettiarachchi S, Macdonald DD (1987) J Electrochem Soc 134:1307–1308

    CAS  Google Scholar 

  210. Macdonald DD, Hettiarachchi S, Lenhart SJ (1987) J Electrochem Soc 134:C423

    Google Scholar 

  211. Hettiarachchi S, Makela K, Song H, Macdonald DD (1992) J Electrochem Soc 139:L3–L4

    CAS  Google Scholar 

  212. Macdonald DD, Hettiarachchi S, Song H, Makela K, Emerson R, Benhaim M (1992) J Solution Chem 21:849–881

    CAS  Google Scholar 

  213. Kriksunov LB, Macdonald DD (1994) Sens Actuat B Chem 22:201–204

    CAS  Google Scholar 

  214. Kriksunov LB, Macdonald DD, Millett PJ (1994) J Electrochem Soc 141:3002–3005

    CAS  Google Scholar 

  215. Biswas R, Lvov SN, Ahmad Z, Macdonald DD (1997) Proceedings of the symposium on electrode materials and processes for energy conversion and storage IV 97:340–353

    Google Scholar 

  216. Eklund K, Lvov SN, Macdonald DD (1997) J Electroanal Chem 437:99–110

    CAS  Google Scholar 

  217. Engelhardt GR, Lvov SN, Macdonald DD (1997) J Electroanal Chem 429:193–201

    CAS  Google Scholar 

  218. Lvov SN, Macdonald DD (1997) Proceedings of the ninth international conference on high temperature materials chemistry 97:472–479

    Google Scholar 

  219. Lvov SN, Macdonald DD (1997) Proceedings of the ninth international conference on high temperature materials chemistry 97:746–754

    Google Scholar 

  220. Lvov SN, Gao H, Kouznetsov D, Balachov I, Macdonald DD (1998) Fluid Phase Equilibria 151:515–523

    Google Scholar 

  221. Lvov SN, Zhou XY, Wei X, Ulyanov SM, Macdonald DD (1999) Abstr Papers Am Chem Soc 218:129

    Google Scholar 

  222. Ai JH, Chen YZ, Urquidi-Macdonald M, Macdonald DD (2007) J Electrochem Soc 154:C43–C51

    CAS  Google Scholar 

  223. Flarsheim WM, Tsou YM, Trachtenberg I, Johnston KP, Bard AJ (1986) J Phys Chem 90:3857–3862

    CAS  Google Scholar 

  224. Mcdonald AC, Fan FRF, Bard AJ (1986) J Phys Chem 90:196–202

    CAS  Google Scholar 

  225. Bard AJ, Flarsheim WM, Johnston KP (1988) J Electrochem Soc 135:1939–1944

    CAS  Google Scholar 

  226. Flarsheim WM, Bard AJ, Johnston KP (1989) J Phys Chem 93:4234–4242

    CAS  Google Scholar 

  227. Cabrera CR, Garcia E, Bard AJ (1989) J Electroanal Chem 260:457–460

    CAS  Google Scholar 

  228. Liu CY, Snyder SR, Bard AJ (1997) J Phys Chem B 101:1180–1185

    CAS  Google Scholar 

  229. Crooks RM, Bard AJ (1988) J Electroanal Chem 243:117–131

    CAS  Google Scholar 

  230. Cabrera CR, Bard AJ (1989) J Electroanal Chem 273:147–160

    CAS  Google Scholar 

  231. Crooks RM, Bard AJ (1988) J Electroanal Chem 240:253–279

    CAS  Google Scholar 

  232. Edenboro BW, Robins RG (1969) Electrochim Acta 14:1285

    Google Scholar 

  233. Jayaweera P, Hettiarachchi S, Ocken H (1994) Colloids Surfaces A 85:19–27

    CAS  Google Scholar 

  234. Delpech S, Picard G, Finne J, Walle E, Conocar O, Laplace A, Lacquement J (2008) Nucl Technol 163:373–381

    CAS  Google Scholar 

  235. Lipkin AG, Gusev BA, Efimov AA (1992) Zashchita Metallov 692–694

    Google Scholar 

  236. Trevani LN, Calvo E, Corti HR (2000) Electrochem Commun 2:312–316

    CAS  Google Scholar 

  237. Niedrach LW (1982) J Electrochem Soc 129:1445–1449

    CAS  Google Scholar 

  238. Yasuda M, Fukumoto K, Ogata Y, Hine F (1988) J Electrochem Soc 135:2982–2987

    CAS  Google Scholar 

  239. Watanabe Y, Kain V, Kobayashi M (2002) JSME Int J A Sol Mech Mater Eng 45:476–480

    CAS  Google Scholar 

  240. Arganis-Juarez CR, Malo JM, Uruchurtu J (2007) Nucl Eng Des 237:2283–2291

    CAS  Google Scholar 

  241. Shintani D, Ishida T, Fukutsuka T, Matsuo Y, Sugie Y (2008) Corrosion 64:607–612

    CAS  Google Scholar 

  242. Kuzin BL, Beresnev SM, Osinkin DA, Bogdanovich NM, Kotov YA, Bagazeev AV (2010) Russ J Electrochem 46:278–284

    CAS  Google Scholar 

  243. Guan YC, Han KN (1996) J Electrochem Soc 143:1875–1880

    CAS  Google Scholar 

  244. Yeh TK, Chien YC, Wang BY, Tsai CH (2008) Corrosion Sci 50:2327–2337

    CAS  Google Scholar 

  245. Ramanathanan S, Karthikeyan A, Govindarajan SA, Kirsch PD (2008) J Vacuum Sci Technol B 26:L33–L35

    Google Scholar 

  246. Munoz-Rojas D, Leriche JB, Delacourt C, Poizot P, Palacin MR, Tarascon JM (2007) Electrochem Commun 9:708–712

    CAS  Google Scholar 

  247. Aklalouch M, Amarilla JM, Rojas RM, Saadoune I, Rojo JM (2008) J Power Sourc 185:501–511

    CAS  Google Scholar 

  248. Lu XC, Li GS, Kim JY, Lemmon JP, Sprenkle VL, Yang ZG (2012) J Power Sourc 215:288–295

    CAS  Google Scholar 

  249. Bokach D, de la Fuente JLG, Tsypkin M, Ochal P, Endsjo IC, Tunold R, Sunde S, Seland F (2011) Fuel Cells 11:735–744

    CAS  Google Scholar 

  250. Wildgoose GG, Giovanelli D, Klymenko EV, Lawrence NS, Jiang L, Jones TGJ, Compton RG (2004) Electroanalysis 16:337–344

    CAS  Google Scholar 

  251. Zhang RH, Zhang XT, Hu SM (2013) Sens Actuat B Chem 177:163–171

    CAS  Google Scholar 

  252. Bogaerts WF, Vanhaute AA (1984) J Electrochem Soc 131:68–72

    CAS  Google Scholar 

  253. Lvov SN, Zhou XY, Ulyanov SM, Bandura AV (2000) Chem Geol 167:105–115

    CAS  Google Scholar 

  254. Lietzke MH, Stoughton RW (1953) J Am Chem Soc 75:5226–5227

    CAS  Google Scholar 

  255. Lvov SN, Macdonald DD (1996) J Electroanal Chem 403:25–30

    Google Scholar 

  256. Bosch RW, Bogaerts WF, Zheng JH (2003) Corrosion 59:162–171

    CAS  Google Scholar 

  257. Tsionskii VM, Kriksunov LB (1988) Instrum Exp Techn 31:259–260

    Google Scholar 

  258. Wildgoose GG, Lawrence NS, Coles BA, Jiang L, Jones TGJ, Compton RG (2003) PCCP 5:4219–4225

    CAS  Google Scholar 

  259. Trevani LN, Calvo E, Corti HR (1997) J Chem Soc Faraday Trans 93:4319–4326

    CAS  Google Scholar 

  260. Tachibana K (2004) Electrochemistry 72:720–721

    Google Scholar 

  261. Kriksunov LB, Semenikhin OA, Bunakova LV (1993) Electrochim Acta 38:1761–1768

    CAS  Google Scholar 

  262. Nagy Z, Yonco RM (1986) J Electrochem Soc 133:2232–2235

    CAS  Google Scholar 

  263. Wakabayashi N, Uchida H, Watanabe M (2002) Electrochem Sol State Lett 5:E62–E65

    CAS  Google Scholar 

  264. Bandi A, Specht M, Weimer T, Schaber K (1995) Energy Convers Manag 36:899–902

    CAS  Google Scholar 

  265. Zhou MH, Lei LC, Dai QZ (2007) Chem Commun 2645–2647

    Google Scholar 

  266. Andress RJ, Martin LL (2010) Int J Hydrogen Energy 35:958–965

    CAS  Google Scholar 

  267. Lee MS, Koo IG, Kim JH, Lee WM (2009) Int J Hydrogen Energy 34:40–47

    CAS  Google Scholar 

  268. Tsionskii VM, Kriksunov LB (1986) J Electroanal Chem 204:131–140

    CAS  Google Scholar 

  269. Kriksunov LB, Krishtalik LI, Tsionskii VM (1989) Sov Electrochem 25:614–617

    Google Scholar 

  270. Kriksunov LB, Krishtalik LI (1993) J Electroanal Chem 354:99–103

    CAS  Google Scholar 

  271. Tsionskii VM, Kriksunov LB, Krishtalik LI (1991) Electrochim Acta 36:411–419

    CAS  Google Scholar 

  272. Kriksunov LB, Bunakova LV, Zabusova SE, Krishtalik LI (1994) Electrochim Acta 39:137–142

    CAS  Google Scholar 

  273. Tsionskii VM, Krishtalik LI, Kriksunov LB (1988) Electrochim Acta 33:623–630

    CAS  Google Scholar 

  274. Dombro RA, Prentice GA, Mchugh MA (1988) J Electrochem Soc 135:2219–2223

    CAS  Google Scholar 

  275. Abbott AP, Harper JC (1996) J Chem Soc Faraday Trans 92:3895–3898

    CAS  Google Scholar 

  276. Abbott AP, Eardley CA, Harper JC, Hope EG (1998) J Electroanal Chem 457:1–4

    CAS  Google Scholar 

  277. Abbott AP, Harper JC (1998) Energy Electrochem Process Cleaner Environ 97:83–86

    Google Scholar 

  278. Abbott AP, Eardley CA (1999) J Phys Chem B 103:6157–6159

    CAS  Google Scholar 

  279. Abbott AP, Harper JC (1999) PCCP 1:839–841

    CAS  Google Scholar 

  280. Abbott AP, Eardley CA (2000) J Phys Chem B 104:9351–9355

    CAS  Google Scholar 

  281. Abbott AP, Eardley CA (2000) J Phys Chem B 104:775–779

    CAS  Google Scholar 

  282. Goldfarb DL, Corti HR (2000) Electrochem Commun 2:663–670

    Google Scholar 

  283. Abbott AP, Eardley CA, Scheirer JE (2001) PCCP 3:3722–3726

    CAS  Google Scholar 

  284. Abbott AP, Durling NE (2001) PCCP 3:579–582

    CAS  Google Scholar 

  285. Abbott AP, Corr S, Durling NE, Hope EG (2002) J Chem Eng Data 47:900–905

    CAS  Google Scholar 

  286. Bard AJ (1963) Anal Chem 35:1125–1128

    CAS  Google Scholar 

  287. Mason TJ, Lorimer JP, Walton DJ (1990) Ultrasonics 28:333–337

    CAS  Google Scholar 

  288. Compton RG, Eklund JC, Page SD, Sanders GHW, Booth J (1994) J Phys Chem 98:12410–12414

    CAS  Google Scholar 

  289. Banks CE, Compton RG (2004) Analyst 129:678–683

    CAS  Google Scholar 

  290. Gründler P (2008) Curr Anal Chem 4:263–270

    Google Scholar 

  291. Compton RG, Eklund JC, Marken F (1997) Electroanalysis 9:509–522

    CAS  Google Scholar 

  292. Del Campo FJ, Coles BA, Marken F, Compton RG, Cordemans E (1999) Ultrasonics Sonochem 6:189–197

    Google Scholar 

  293. Gonzalez-Garcia J, Esclapez MD, Bonete P, Hernandez YV, Garreton LG, Saez V (2010) Ultrasonics 50:318–322

    CAS  Google Scholar 

  294. Klima J (2011) Ultrasonics 51:202–209

    CAS  Google Scholar 

  295. Ramachandran R, Saraswathi R (2011) Russ J Electrochem 47:15–25

    CAS  Google Scholar 

  296. Chiba A (1999) Electrochemistry 67:930–934

    CAS  Google Scholar 

  297. Gedanken A (2004) Ultrasonics Sonochem 11:47–55

    CAS  Google Scholar 

  298. Saez V, Mason TJ (2009) Molecules 14:4284–4299

    CAS  Google Scholar 

  299. Zin V, Campadello E, Zanella A, Brunelli K, Dabala M (2010) Metallurgia Italiana 29–37

    Google Scholar 

  300. Shi JJ, Wang S, He TT, Abdel-Halim ES, Zhu JJ (2014) Ultrasonics Sonochem 21:493–498

    CAS  Google Scholar 

  301. Reyman D, Guereca E, Herrasti P (2007) Ultrasonics Sonochem 14:653–660

    CAS  Google Scholar 

  302. Atobe M, Ishikawa K, Asami R, Fuchigami T (2009) Angew Chem Int Ed 48:6069–6072

    CAS  Google Scholar 

  303. Taouil AE, Lallemand F, Hallez L, Hihn JY (2010) Electrochim Acta 55:9137–9145

    Google Scholar 

  304. Garbellini GS, Salazar-Banda GR, Avaca LA (2008) Quimica Nova 31:123–133

    CAS  Google Scholar 

  305. Compton RG, Foord JS, Marken F (2003) Electroanalysis 15:1349–1363

    CAS  Google Scholar 

  306. Vetter KJ (1961) Elektrochemische Kinetik. Springer, Berlin

    Google Scholar 

  307. Agar JN (1963) Thermogalvanic cells. In: Delahay P (ed) Advances in electrochemistry and electrochemical engineering. Interscience Publishers, London, pp 31–121

    Google Scholar 

  308. Boudeville P, Tallec A (1988) Thermochim Acta 126:221–234

    CAS  Google Scholar 

  309. Lange E, Hesse T (1933) Z Elektrochem 39:374–384

    CAS  Google Scholar 

  310. Sherfey JM (1963) J Electrochem Soc 110:213–221

    CAS  Google Scholar 

  311. Fang Z, Wang SF, Zhang ZH, Qiu GZ (2008) Thermochim Acta 473:40–44

    CAS  Google Scholar 

  312. Ishikawa H, Mendoza O, Sone Y, Umeda M (2012) J Power Sourc 198:236–242

    CAS  Google Scholar 

  313. Song LB, Li XH, Wang ZX, Guo HJ, Xiao ZL, Zhang F, Peng SJ (2013) Electrochim Acta 90:461–467

    CAS  Google Scholar 

  314. Zhang HZ, Zhang PM, Fang Z (1995) J Therm Anal 45:151–156

    CAS  Google Scholar 

  315. Mostany J, Scharifker BR (1997) Electrochim Acta 42:291–301

    CAS  Google Scholar 

  316. Etzel KD, Bickel KR, Schuster R (2010) Rev Sci Instrum 81:034101–034108

    Google Scholar 

  317. Etzel KD, Bickel KR, Schuster R (2010) ChemPhysChem 11:1416–1424

    CAS  Google Scholar 

  318. Fang Z, Wang S, Zhang Z (2011) J Therm Anal Calorim 106:937–943

    CAS  Google Scholar 

  319. Hellwig C, Sorgel S, Bessler WG (2011) Batteries energy technol (general) – 219th ECS Meeting 35:215–228

    Google Scholar 

  320. Nieto N, Diaz L, Gastelurrutia J, Alava I, Blanco F, Ramos JC, Rivas A (2013) J Electrochem Soc 160:A212–A217

    CAS  Google Scholar 

  321. Christensen J, Cook D, Albertus P (2013) J Electrochem Soc 160:A2258–A2267

    CAS  Google Scholar 

  322. Catherino HA (2013) J Power Sourc 239:505–512

    CAS  Google Scholar 

  323. Bazinski SJ, Wang X (2014) J Electrochem Soc 161:A168–A175

    CAS  Google Scholar 

  324. Bandhauer TM, Garimella S, Fuller TF (2014) J Power Sourc 247:618–628

    CAS  Google Scholar 

  325. Miller JR (2006) Electrochim Acta 52:1703–1708

    CAS  Google Scholar 

  326. Holmes HF, Joncich MJ (1959) Anal Chem 31:28–32

    CAS  Google Scholar 

  327. Holmes HF, Joncich MJ (1960) Anal Chem 32:1251–1253

    CAS  Google Scholar 

  328. Graves BB (1972) Anal Chem 44:993–1002

    CAS  Google Scholar 

  329. Spritzer MS (1975) Thermoelectrochemistry – thermal studies at electrode surfaces. Abstr Papers Am Chem Soc 169:105

    Google Scholar 

  330. Cooke SL, Graves BB (1968) Chem Instrum 1:119

    CAS  Google Scholar 

  331. Tamamushi R (1973) J Electroanal Chem 45:500–503

    CAS  Google Scholar 

  332. Tamamushi R (1975) J Electroanal Chem 65:263–273

    CAS  Google Scholar 

  333. Soto MB, Kubsch G, Scholz F (2002) J Electroanal Chem 528:18–26

    Google Scholar 

  334. Soto MB, Scholz F (2002) J Electroanal Chem 528:27–32

    Google Scholar 

  335. Ozeki T, Watanabe I, Ikeda S (1979) J Electroanal Chem 96:117–121

    CAS  Google Scholar 

  336. Ozeki T, Watanabe I, Ikeda S (1983) J Electroanal Chem 152:41–54

    CAS  Google Scholar 

  337. Ozeki T, Ogawa N, Aikawa K, Watanabe I, Ikeda S (1983) J Electroanal Chem 145:53–65

    CAS  Google Scholar 

  338. Boudeville P (1994) Inorg Chim Acta 226:69–78

    CAS  Google Scholar 

  339. Wang H, Wang D, Li B, Sun S (1995) J Electroanal Chem 392:13–19

    Google Scholar 

  340. Wang H, Wang D, Li B, Sun S (1995) J Electroanal Chem 392:21–25

    Google Scholar 

  341. Shibata S, Sumino MP, Yamada A (1985) J Electroanal Chem 193:123–134

    CAS  Google Scholar 

  342. Shibata S, Sumino MP (1985) J Electroanal Chem 193:135–143

    CAS  Google Scholar 

  343. Jiang Z, Xiang Y, Wang J (1991) J Electroanal Chem 316:199–209

    CAS  Google Scholar 

  344. Jiang Z, Zhang W, Huang X (1994) J Electroanal Chem 367:293–296

    CAS  Google Scholar 

  345. Jiang ZY, Zhang J, Dong LJ, Zhuang JH (1999) J Electroanal Chem 469:1–10

    CAS  Google Scholar 

  346. Schuster R, Rosch R, Timm AE (2007) Z Phys Chem 221:1479–1491

    CAS  Google Scholar 

  347. Bickel KR, Etzel KD, Halka V, Schuster R (2013) Electrochim Acta 112:801–812

    CAS  Google Scholar 

  348. Decker F, Fracastoro-Decker M, Cella N, Vargas H (1990) Electrochim Acta 35:25–26

    CAS  Google Scholar 

  349. Tehrani P, Engquist I, Robinson ND, Nilsson D, Robertsson M, Berggren M (2010) Electrochim Acta 55:7061–7066

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gründler, P. (2015). History of Modern Thermoelectrochemistry. In: In-situ Thermoelectrochemistry. Monographs in Electrochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45818-1_3

Download citation

Publish with us

Policies and ethics