Skip to main content

Current Reduction Phenomenon in Graphene-Based Device

  • Conference paper
Computer Engineering and Technology (NCCET 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 491))

Included in the following conference series:

  • 692 Accesses

Abstract

A current reduction phenomenon was observed in back gate graphene-based field effect transistor. The drain current ID became smaller in next measurement even though the sweep range of the back gate bias VBG increased. We consider the reason for this phenomenon is that the contaminations produced during the device fabrication inevitably may serve as trap centers at the electrode-graphene interface, which would weaken the extent of p-type doping by trapping electrons when VBG is positive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Novoselov, K.S., et al.: Electric Field Effect in Atomically Thin Carbon Films. Science 306(5696), 666–669 (2004)

    Article  Google Scholar 

  2. Castro, E.V., et al.: Limits on electron quality in suspended graphene due to flexural phonons. arXiv preprint arXiv:1008.2522 (2010)

    Google Scholar 

  3. Balandin, A.A., et al.: Superior thermal conductivity of single-layer graphene. Nano Letters 8(3), 902–907 (2008)

    Article  Google Scholar 

  4. Schwierz, F.: Graphene transistors. Nature Nanotechnology 5(7), 487–496 (2010)

    Article  Google Scholar 

  5. Wang, X., et al.: Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Physical Review Letters 100(20), 206803 (2008)

    Article  Google Scholar 

  6. Khatami, Y., et al.: Metal-to-multilayer-graphene contact—Part I: Contact resistance modeling. IEEE Transactions on Electron Devices 59(9), 2444–2452 (2012)

    Article  Google Scholar 

  7. Khatami, Y., et al.: Metal-to-multilayer-graphene contact—Part II: Analysis of contact resistance. IEEE Transactions on Electron Devices 59(9), 2453–2460 (2012)

    Article  Google Scholar 

  8. Di Bartolomeo, A., et al.: Effect of back-gate on contact resistance and on channel conductance in graphene-based field-effect transistors. Diamond and Related Materials 38, 19–23 (2013)

    Article  Google Scholar 

  9. Ferrari, A.C.: Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications 143(1), 47–57 (2007)

    Article  Google Scholar 

  10. Ferrari, A., et al.: Raman spectrum of graphene and graphene layers. Physical Review Letters 97(18), 187401 (2006)

    Article  Google Scholar 

  11. Shih, C.-J., et al.: Understanding Surfactant/Graphene Interactions Using a Graphene Field Effect Transistor: Relating Molecular Structure to Hysteresis and Carrier Mobility. Langmuir 28(22), 8579–8586 (2012)

    Article  Google Scholar 

  12. Jia, K., et al.: Stability analysis of a back-gate graphene transistor in air environment. Journal of Semiconductors 34(8), 084004 (2013)

    Article  Google Scholar 

  13. Jang, C.W., et al.: Rapid-thermal-annealing surface treatment for restoring the intrinsic properties of graphene field-effect transistors. Nanotechnology 24(40), 405301 (2013)

    Article  Google Scholar 

  14. Nouchi, R., Saito, T., Tanigaki, K.: Observation of negative contact resistances in graphene field-effect transistors. Journal of Applied Physics 111(8) (2012)

    Google Scholar 

  15. Tian, J., et al.: Ambipolar graphene field effect transistors by local metal side gates. Applied Physics Letters 96(26), 263110 (2010)

    Article  Google Scholar 

  16. Luo, X., et al.: Current-carrying Capacity of Long & Short Channel 2D Graphene Transistors. In: Device Research Conference. IEEE (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, H., Fang, L. (2015). Current Reduction Phenomenon in Graphene-Based Device. In: Xu, W., Xiao, L., Li, J., Zhang, C., Zhu, Z. (eds) Computer Engineering and Technology. NCCET 2014. Communications in Computer and Information Science, vol 491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45815-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45815-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45814-3

  • Online ISBN: 978-3-662-45815-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics