Skip to main content

Hydrogen Bonding for Molecular, Macromolecular, and Supramolecular Materials

  • Chapter
  • First Online:
Hydrogen Bonded Supramolecular Materials

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 88))

Abstract

This chapter highlights the recent advance in the applications of hydrogen bonding for modulating or improving the conformations, properties, or functions of molecular and supramolecular architectures, including molecular switching systems, self-healing materials, artificial photosynthesis, dye-sensitized solar cells, organic photovoltaics, organic light-emitting diodes, and organic field-effect transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dong H, Fu X, Liu J, Wang Z, Hu W (2013) Adv Mater 25:6158

    Google Scholar 

  2. Hales JM, Barlow S, Kim H, Mukhopadhyay S, Bredas JL, Perry JW, Marder SR (2014) Chem Mater 26:549

    Google Scholar 

  3. Park S, Wang G, Cho B, Kim Y, Song S, Ji Y, Yoon MH, Lee T (2012) Nat Nanotechnol 7:438

    Google Scholar 

  4. Yen YS, Chou HH, Chen YC, Hsu CY, Lin JT (2012) J Mater Chem 22:8734

    Google Scholar 

  5. Ma Y, Wen Y, Song Y (2011) J Mater Chem 21:3522

    Google Scholar 

  6. Stupp SI, Palmer LC (2014) Chem Mater 26:507

    Google Scholar 

  7. Liu H, Xu J, Li Y, Li Y (2010) Acc Chem Res 43:1496

    Google Scholar 

  8. Grozema FC, Siebbeles LDA (2008) Int Rev Phys Chem 27:87

    Google Scholar 

  9. Broer DJ, Bastiaansen CMW, Debije MG, Schenning APHJ (2012) Angew Chem Int Ed 51:7102

    Google Scholar 

  10. Soegiarto AC, Yan W, Kent AD, Ward MD (2011) J Mater Chem 21:2204

    Google Scholar 

  11. Krische MJ, Lehn JM (2000) Struct Bond 96:3

    Google Scholar 

  12. Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP (2001) Chem Rev 101:4071

    Google Scholar 

  13. Tournilhac F, Cordier P, Montarnal D, Soulie-Ziakovic C, Leibler L (2010) Macromol Symp 291:84

    Google Scholar 

  14. Panman MR, Bakker BH, den Uyl D, Kay ER, Leigh DA, Buma WJ, Brouwer AM, Geenevasen JAJ, Woutersen S (2013) Nat Chem 5:929

    Google Scholar 

  15. Li ZT, Zhang KD, Shi ZM, Wang L, Zhou C, Lu BY (2012) Pure Appl Chem 84:965

    Google Scholar 

  16. Sauvage JP, Gaspard P (ed) (2011) From non-covalent assemblies to molecular machines. Wiley-VCH, Weinheim

    Google Scholar 

  17. Kay ER, Leigh DA, Zerbetto F (2007) Angew Chem Int Ed 46:72

    Google Scholar 

  18. Takeuchi M, Ikeda M, Sugasaki A, Shinkai S (2001) Acc Chem Res 34:865

    Google Scholar 

  19. Leung KCF, Chak CP, Lo CM, Wong WY, Xuan S, Cheng CHK (2009) Chem Asian J 4:364

    Google Scholar 

  20. Samoshin AV, Veselov IS, Huynh L, Shestakova AK, Chertkov VA, Grishina GV, Samoshin VV (2011) Tetrahedron Lett 52:5375

    Google Scholar 

  21. Samoshin AV, Joo H, Korneichuk AY, Veselov IS, Grishina GV, Samoshin VV (2013) Tetrahedron Lett 54:1020

    Google Scholar 

  22. Su X, Aprahamian I (2014) Chem Soc Rev 43:1963

    Google Scholar 

  23. Su X, Aprahamian I (2011) Org Lett 13:30

    Google Scholar 

  24. Roncucci P, Pirondini L, Paderni G, Massera C, Dalcanale E, Azov VA, Diederich F (2006) Chem Eur J 12:4775

    Google Scholar 

  25. Pochorovski I, Ebert MO, Gisselbrecht JP, Boudon C, Schweizer WB, Diederich F (2012) J Am Chem Soc 134:14702

    Google Scholar 

  26. Zhang DW, Zhao X, Hou JL, Li ZT (2012) Chem Rev 112:5271

    Google Scholar 

  27. Kanamori D, Okamura T, Yamamoto H, Ueyama N (2005) Angew Chem Int Ed 44:969

    Google Scholar 

  28. Shi ZM, Huang J, Ma Z, Zhao X, Guan Z, Li ZT (2010) Macromolecules 43:6185

    Google Scholar 

  29. Zhang KD, Zhao X, Wang GT, Liu Y, Zhang Y, Lu HJ, Jiang XK, Li ZT (2011) Angew Chem Int Ed 50:9866

    Google Scholar 

  30. van Gemert GML, Peeters JW, Söntjens SHM, Janssen HM, Bosman AW (2012) Macromol Chem Phys 213:234

    Google Scholar 

  31. Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L (2008) Nature 451:977

    Google Scholar 

  32. Burattini S, Greenland BW, Chappell D, Colquhoun HM, Hayes W (2010) Chem Soc Rev 39:1973

    Google Scholar 

  33. Herbst F, Döhler D, Michael P, Binder WH (2013) Macromol Rapid Commun 34:203

    Google Scholar 

  34. Chen Y, Kushner AM, Williams GA, Guan Z (2012) Nat Chem 4:467

    Google Scholar 

  35. Sijbesma RP, Meijer EW (2003) Quadruple hydrogen bonded systems. Chem Commun 5–16

    Google Scholar 

  36. Hentschel J, Kushner AM, Ziller J, Guan Z (2012) Angew Chem Int Ed 51:10561

    Google Scholar 

  37. Folmer BJB, Sijbesma RP, Versteegen RM, van der Rijt JAJ, Meijer EW (2000) Adv Mater 12:874

    Google Scholar 

  38. SupraPolix BV. http://www.suprapolix.com/. Accessed Dec 2012

  39. Mukhopadhyay P, Fujita N, Takada A, Kishida T, Shirakawa M, Shinkai S (2010) Angew Chem Int Ed 49:6338

    Google Scholar 

  40. Xu Z, Peng J, Yan N, Yu H, Zhang S, Liu K, Fang Y (2013) Soft Matter 9:1091

    Google Scholar 

  41. Phadke A, Zhang C, Arman B, Hsu CC, Mashelkar RA, Lele AK, Tauber MJ, Arya G, Varghese S (2012) Proc Natl Acad Sci USA 109:4383

    Google Scholar 

  42. Meyer TJ (1989) Acc Chem Res 22:163

    Google Scholar 

  43. Gust D, Moore TA, Moore AL (2001) Acc Chem Res 34:40

    Google Scholar 

  44. Balzani V, Credi A, Venturi M (2008) ChemSusChem 1:26

    Google Scholar 

  45. Wasielewski MR (2009) Acc Chem Res 42:1910

    Google Scholar 

  46. Witus LS, Francis MB (2011) Acc Chem Res 44:774

    Google Scholar 

  47. Rao KV, Datta KKR, Eswaramoorthy M, George SJ (2012) Chem Eur J 18:2184

    Google Scholar 

  48. Panda MK, Ladomenou K, Coutsolelos AG (2012) Coord Chem Rev 256:2601

    Google Scholar 

  49. Loiseau F, Marzanni G, Quici S, Indelli MT, Campagna S (2003) An artificial antenna complex containing four [Ru(bpy)3]2+-type chromophores as light-harvesting components and a [Ru(bpy)(CN)4]2− subunit as the energy trap. A structural motif which resembles the natural photosynthetic systems. Chem Commun 286–287

    Google Scholar 

  50. Sinks LE, Rybtchinski B, Iimura M, Jones BA, Goshe AJ, Zuo X, Tiede DM, Li X, Wasielewski MR (2005) Chem Mater 17:6295

    Google Scholar 

  51. Langford SJ, Latter MJ, Woodward CP (2006) Photochem Photobiol 82:1530

    Google Scholar 

  52. Osuka A, Shiratori H, Yoneshima R, Okada T, Taniguchi S, Mataga N (1995) Intracomplex electron transfer in a hydrogen-bonded porphyrin–diimide system. Chem Lett 24:913–194

    Google Scholar 

  53. Osuka A, Yoneshima R, Shiratori H, Okada T, Taniguchi S, Mataga N (1998) Electron transfer in a hydrogen-bonded assembly consisting of porphyrin–diimide. Chem Commun 1567–1568

    Google Scholar 

  54. Sessler JL, Brown CT, O’Connor D, Springs SL, Wang R, Sathiosatham M, Hirose T (1998) J Org Chem 63:7370

    Google Scholar 

  55. Gadde S, Islam DMS, Wijesinghe CA, Subbaiyan NK, Zandler ME, Araki Y, Ito O, D’Souza F (2007) J Phys Chem C 111:12500

    Google Scholar 

  56. Ley D, Guzman CX, Adolfsson KH, Scott AM, Braunschweig AB (2014) J Am Chem Soc 136:7809

    Google Scholar 

  57. Martín N, Sánchez L, Herranz MA, Illescas B, Guldi DM (2007) Acc Chem Res 40:1015

    Google Scholar 

  58. Segura M, Sánchez L, de Mendoza J, Martín N, Guldi DM (2003) J Am Chem Soc 125:15093

    Google Scholar 

  59. Blondeau P, Segura M, Pérez-Fernández R, de Mendoza J (2007) Chem Soc Rev 36:198

    Google Scholar 

  60. Damrauer NH, Hodgkiss JM, Rosenthal J, Nocera DG (2004) J Phys Chem B 108:6315

    Google Scholar 

  61. Sánchez L, Sierra M, Martín N, Myles AJ, Dale TJ, Rebek J Jr, Seitz W, Guldi DM (2006) Angew Chem Int Ed 45:4637

    Google Scholar 

  62. O’Regan B, Gratzel M (1991) Nature 353:737

    Google Scholar 

  63. McConnell RD (2002) Renew Sustain Energy Rev 6:273

    Google Scholar 

  64. Durrant JR, Haque SA, Palomares E (2004) Coord Chem Rev 248:1247

    Google Scholar 

  65. Luo Y, Li D, Meng Q (2009) Adv Mater 21:4647

    Google Scholar 

  66. Gong J, Liang J, Sumathy K (2012) Renew Sustain Energy Rev 16:5848

    Google Scholar 

  67. Yao QH, Shan L, Li FY, Yin DD, Huang CH (2003) New J Chem 27:1277

    Google Scholar 

  68. Ooyama Y, Sato T, Harima Y, Ohshita J (2014) J Mater Chem A 2:3293

    Google Scholar 

  69. Katono M, Bessho T, Meng S, Humphry-Baker R, Rothenberger G, Zakeeruddin SM, Kaxiras E, Grätzel M (2011) Langmuir 27:14248

    Google Scholar 

  70. Zhang F, Shi F, Ma W, Gao F, Jiao Y, Li H, Wang J, Shan X, Lu X, Meng S (2013) J Phys Chem C 117:14659

    Google Scholar 

  71. Kitamura T, Ikeda M, Shigaki K, Inoue T, Anderson NA, Ai X, Lian T, Yanagida S (2004) Chem Mater 16:1806

    Google Scholar 

  72. Privalov T, Boschloo G, Hagfelt A, Svensson PH, Kloo L (2009) J Phys Chem C 113:783

    Google Scholar 

  73. Kusama H, Sugihara H, Sayama K (2010) J Phys Chem C 114:11335

    Google Scholar 

  74. Wang P, Zakeeruddin SM, Moser JE, Grätzel M (2003) J Phys Chem B 107:13280

    Google Scholar 

  75. Mohmeyer N, Kuang D, Wang P, Schmidt HW, Zakeeruddin SM, Grätzel M (2006) J Mater Chem 16:2978

    Google Scholar 

  76. Kim JH, Kang MS, Kim YJ, Won J, Park NG, Kang YS (2004) Dyesensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silica nanoparticles. Chem Commun 1662–1663

    Google Scholar 

  77. Kim YJ, Kim JH, Kang MS, Lee MJ, Won J, Lee JC, Kang YS (2004) Adv Mater 16:1753

    Google Scholar 

  78. Kang MS, Kim JH, Won J, Kang YS (2007) J Phys Chem C 111:5222

    Google Scholar 

  79. Jeon LS, Kim SY, Kim SJ, Lee YG, Kang MS, Kang YS (2010) J Photochem Photobiol A 212:88

    Google Scholar 

  80. El-Zohry AM, Zietz B (2013) J Phys Chem C 117:6544

    Google Scholar 

  81. Cai M, Pan X, Liu W, Sheng J, Fang X, Zhang C, Huo Z, Tian H, Xiao S, Dai S (2013) J Mater Chem A 1:4885

    Google Scholar 

  82. Abbotto A, Manfredi N (2011) Dalton Trans 40:12421

    Google Scholar 

  83. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Science 270:1789

    Google Scholar 

  84. Yu J, Huang J, Zang Y (2013) Mater Sci Res J 7:81

    Google Scholar 

  85. Ryuzaki S, Onoe J (2013) Nano Rev 4:21055

    Google Scholar 

  86. Lin Y, Lim JA, Wei Q, Mannsfeld SCB, Briseno AL, Watkins JJ (2012) Chem Mater 24:622

    Google Scholar 

  87. Sahu D, Padhy H, Patra D, Kekuda D, Chu CW, Chiang IH, Lin HC (2010) Polymer 51:6182

    Google Scholar 

  88. Siram RBK, Tandy K, Horecha M, Formanek P, Stamm M, Gevorgyan S, Krebs FC, Kiriy A, Meredith P, Burn PL, Namdas EB, Patil S (2011) J Phys Chem C 115:14369

    Google Scholar 

  89. Ruiz-Carretero A, Aytun TA, Bruns CJ, Newcomb CJ, Tsai WW, Stupp SI (2013) J Mater Chem A 1:11674

    Google Scholar 

  90. Kim KH, Yu H, Kang H, Kang DJ, Cho CH, Cho HH, Oh JH, Kim BJ (2013) J Mater Chem A 1:14538

    Google Scholar 

  91. Schulze BM, Shewmon NT, Zhang J, Watkins DL, Mudrick JP, Cao W, Zerdan RB, Quartararo AJ, Ghiviriga I, Xue J, Castellano RK (2014) J Mater Chem A 2:1541

    Google Scholar 

  92. Gopalan SA, Seo MH, Anantha-Iyengar G, Han B, Lee SW, Kwon DH, Leed SH, Kang SW (2014) J Mater Chem A 2:2174

    Google Scholar 

  93. Kumar RJ, Churches QI, Subbiah J, Gupta A, Ali A, Evans RA, Holmes AB (2013) Chem Commun 49:6552

    Google Scholar 

  94. Kumar RJ, Subbiah J, Holmes AB (2013) Beilstein J Org Chem 9:1102

    Google Scholar 

  95. El-ghayoury A, Schenning APHJ, van Hal PA, van Duren JKJ, Janssen RAJ, Meijer EW (2001) Angew Chem Int Ed 40:3660

    Google Scholar 

  96. Jonkheijm P, van Duren JKJ, Kemerink M, Janssen RAJ, Schenning APHJ, Meijer EW (2006) Macromolecules 39:784

    Google Scholar 

  97. Chen G, Sasabe H, Sasaki Y, Katagiri H, Wang XF, Sano T, Hong Z, Yang Y, Kido J (2014) Chem Mater 26:1356

    Google Scholar 

  98. Liu C, Li Y, Li C, Li W, Zhou C, Liu H, Bo Z, Li Y (2009) J Phys Chem C 113:21970

    Google Scholar 

  99. Xue P, Lu R, Zhao L, Xu D, Zhang X, Li K, Song Z, Yang X, Takafuji M, Ihara H (2010) Langmuir 26:6669

    Google Scholar 

  100. Yao K, Chen L, Li F, Wang P, Chen Y (2012) J Phys Chem C 116:714

    Google Scholar 

  101. Li F, Yager KG, Dawson NM, Yang J, Malloy KJ, Qin Y (2013) Macromolecules 46:9021

    Google Scholar 

  102. Worfolk BJ, Rider DA, Elias AL, Thomas M, Harris KD, Buriak JM (2011) Adv Funct Mater 21:1816

    Google Scholar 

  103. Geffroy B, le Roy P, Prat C (2006) Polym Int 55:572

    Google Scholar 

  104. Sasabe H, Kido J (2011) Chem Mater 23:621

    Google Scholar 

  105. Xie Z, Yang B, Li F, Cheng G, Liu L, Yang G, Xu H, Ye L, Hanif M, Liu S, Ma D, Ma Y (2005) J Am Chem Soc 127:14152

    Google Scholar 

  106. Du C, Ye S, Chen J, Guo Y, Liu Y, Lu K, Liu Y, Qi T, Gao X, Shuai Z, Yu G (2009) Chem Eur J 15:8275

    Google Scholar 

  107. Zhao Z, Chen S, Lam JWY, Wang Z, Lu P, Mahtab F, Sung HHY, Williams ID, Ma Y, Kwok HS, Tang BZ (2011) J Mater Chem 21:7210

    Google Scholar 

  108. Jiang T, Jiang Y, Qin W, Chen S, Lu Y, Lam JWY, He B, Ping Lu P, Sung HHY, Williams ID, Kwok HS, Zhao Z, Qiu H, Tang BZ (2012) J Mater Chem 22:20266

    Google Scholar 

  109. Bonardi L, Kanaan H, Camerel F, Jolinat P, Retailleau P, Ziessel R (2008) Adv Funct Mater 18:401

    Google Scholar 

  110. Yokoyama D, Sasabe H, Furukawa Y, Adachi C, Kido J (2011) Adv Funct Mater 21:1375

    Google Scholar 

  111. Niu C, Zhao L, Fang T, Deng X, Ma H, Zhang J, Na N, Han J, Ouyang J (2014) Langmuir 30:2351

    Google Scholar 

  112. Abbel R, Grenier C, Pouderoijen MJ, Stouwdam JW, Leclère PELG, Sijbesma RP, Meijer EW, Schenning APHJ (2009) J Am Chem Soc 131:833

    Google Scholar 

  113. Braga D, Horowitz G (2009) Adv Mater 21:1473

    Google Scholar 

  114. Bonini M, Zalewski L, Orgiu E, Breiner T, Dötz F, Kastler M, Samorì P (2011) J Phys Chem C 115:9753

    Google Scholar 

  115. Lam KH, Foong TRB, Zhang J, Grimsdale AC, Lam YM (2014) Org Electronics 15:1592

    Google Scholar 

  116. Jeong SM, Kim TG, Jung E, Park JW (2013) ACS Appl Mater Interfaces 5:6837

    Google Scholar 

  117. Gsänger M, Oh JH, Könemann M, Höffken HW, Krause AM, Bao Z, Würthner F (2010) Angew Chem Int Ed 49:740

    Google Scholar 

  118. Glowacki ED, Irimia-Vladu M, Kaltenbrunner M, Gasiorowski J, White MS, Monkowius U, Romanazzi G, Suranna GP, Mastrorilli P, Sekitani T, Bauer S, Someya T, Torsi L, Sariciftci NS (2013) Adv Mater 25:1563

    Google Scholar 

  119. Liang Z, Tang Q, Liu J, Li J, Yan F, Miao Q (2010) Chem Mater 22:6438

    Google Scholar 

  120. Black HT, Perepichka DF (2014) Angew Chem Int Ed 53:2138

    Google Scholar 

  121. Lee J, Park JH, Lee YT, Jeon PJ, Lee HS, Nam SH, Yi Y, Lee Y, Im S (2014) ACS Appl Mater Interfaces 6:4965

    Google Scholar 

  122. Seki T, Maruya Y, Nakayama K, Karatsu T, Kitamura A, Yagai S (2011) Chem Commun 47:12447

    Google Scholar 

  123. See KC, Becknell A, Miragliotta J, Katz HE (2007) Adv Mater 19:3322

    Google Scholar 

  124. Sun B, Hong W, Aziz H, Li Y (2012) J Mater Chem 22:18950

    Google Scholar 

  125. Suna Y, Nishida J, Fujisaki Y, Yamashita Y (2012) Org Lett 14:3356

    Google Scholar 

  126. Chen S, Sun B, Hong W, Yan Z, Aziz H, Meng Y, Hollinger J, Seferos DS, Li Y (2014) J Mater Chem C 2:1683

    Google Scholar 

  127. Kolhe NB, Devi RN, Senanayak SP, Jancy B, Narayan KS, Asha SK (2012) J Mater Chem 22:15235

    Google Scholar 

  128. DiBenedetto SA, Frattarelli D, Ratner MA, Facchetti A, Marks TJ (2008) J Am Chem Soc 130:7528

    Google Scholar 

  129. Rancatore BJ, Mauldin CE, Tung SH, Wang C, Hexemer A, Strzalka J, Fréchet JMJ, Xu T (2010) ACS Nano 4:2721

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan-Ting Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, H., Zhang, DW., Li, ZT. (2015). Hydrogen Bonding for Molecular, Macromolecular, and Supramolecular Materials. In: Li, ZT., Wu, LZ. (eds) Hydrogen Bonded Supramolecular Materials. Lecture Notes in Chemistry, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45780-1_6

Download citation

Publish with us

Policies and ethics