Compression Planner for Time Series Database with GPU Support

  • Piotr PrzymusEmail author
  • Krzysztof Kaczmarski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8920)


Nowadays, we can observe increasing interest in processing and exploration of time series. Growing volumes of data and needs of efficient processing pushed research in new directions. This paper presents a lossless lightweight compression planner intended to be used in a time series database system. We propose a novel compression method which is ultra fast and tries to find the best possible compression ratio by composing several lightweight algorithms tuned dynamically for incoming data. The preliminary results are promising and open new horizons for data intensive monitoring and analytic systems.


Time series database Lightweight compression Lossless compression GPU CUDA GPGPU Compression optimization 


  1. 1.
    Apache HBase (2013).
  2. 2.
    OpenTSDB - A Distributed, Scalable Monitoring System (2013).
  3. 3.
    ParStream - website (2013).
  4. 4.
    TempoDB - Hosted time series database service (2013).
  5. 5.
    Andrzejewski, W., Wrembel, R.: GPU-WAH: applying GPUs to compressing bitmap indexes with word aligned hybrid. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010, Part II. LNCS, vol. 6262, pp. 315–329. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Boncz, P.A., Zukowski, M., Nes, N.: Monetdb/x100: hyper-pipelining query execution. In: CIDR, pp. 225–237 (2005)Google Scholar
  7. 7.
    Breß, S., Schallehn, E., Geist, I.: Towards Optimization of Hybrid CPU/GPU Query Plans in Database Systems. In: New Trends in Databases and Information Systems, pp. 27–35. Springer, Heidelberg (2013)Google Scholar
  8. 8.
    Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. In: OSDI’06: Seventh Symposium on Operating System Design and Implementation, Seattle, WA, November, pp. 205–218 (2006)Google Scholar
  9. 9.
    Chatfield, C.: The Analysis of Time Series: An Introduction, 6th edn. CRC Press, Florida (2004)Google Scholar
  10. 10.
    Cloudkick. 4 months with cassandra, a love story, March 2010.
  11. 11.
    Dean, J., Ghemawat, S.: Mapreduce simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2004)CrossRefGoogle Scholar
  12. 12.
    Delbru, R., Campinas, S., Samp, K., Tummarello, G.: Adaptive frame of reference for compressing inverted lists. Technical report, DERI - Digital Enterprise Research Institute, December 2010Google Scholar
  13. 13.
    Fang, W., He, B., Luo, Q.: Database compression on graphics processors. Proc. VLDB Endowment 3(1–2), 670–680 (2010)CrossRefGoogle Scholar
  14. 14.
    Fink, E., Gandhi, H.S.: Compression of time series by extracting major extrema. J. Exp. Theor. Artif. Intell. 23(2), 255–270 (2011)CrossRefGoogle Scholar
  15. 15.
    Lees, M., Ellen, R., Steffens, M., Brodie, P., Mareels, I., Evans, R.: Information infrastructures for utilities management in the brewing industry. In: Herrero, P., Panetto, H., Meersman, R., Dillon, T. (eds.) OTM-WS 2012. LNCS, vol. 7567, pp. 73–77. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Mult. Optim. 26(6), 369–395 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    OpenTSDB. Whats opentsdb (2010–2012).
  18. 18.
    Papadimitriou, C.H., Yannakakis, M.: Multiobjective query optimization. In: Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 52–59. ACM (2001)Google Scholar
  19. 19.
    Przymus, P., Kaczmarski, K.: Improving efficiency of data intensive applications on GPU using lightweight compression. In: Herrero, P., Panetto, H., Meersman, R., Dillon, T. (eds.) OTM-WS 2012. LNCS, vol. 7567, pp. 3–12. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Przymus, P., Kaczmarski, K.: Dynamic compression strategy for time series database using GPU. In: New Trends in Databases and Information Systems. 17th East-European Conference on Advances in Databases and Information Systems, 1–4 September 2013 - Genoa, Italy (2013)Google Scholar
  21. 21.
    Przymus, P., Kaczmarski, K.: Time series queries processing with gpu support. In: New Trends in Databases and Information Systems. 17th East-European Conference on Advances in Databases and Information Systems, 1–4 September 2013 - Genoa, Italy (2013)Google Scholar
  22. 22.
    Przymus, P., Kaczmarski, K., Stencel, K.: A bi-objective optimization framework for heterogeneous CPU/GPU query plans. In: CS&P 2013 Concurrency, Specification and Programming. Proceedings of the 22nd International Workshop on Concurrency, Specification and Programming, 25–27 September 2013 - Warsaw, Poland (2013)Google Scholar
  23. 23.
    Przymus, P., Rykaczewski, K., Wiśniewski, R.: Application of wavelets and Kernel methods to detection and extraction of behaviours of freshwater mussels. In: Kim, T., Adeli, H., Slezak, D., Sandnes, F.E., Song, X., Chung, K., Arnett, K.P. (eds.) FGIT 2011. LNCS, vol. 7105, pp. 43–54. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Wu, L., Storus, M., Cross, D.: Cs315a: final project cuda wuda shuda: Cuda compression project (2009)Google Scholar
  25. 25.
    Yan, H., Ding, S., Suel, T.: Inverted index compression and query processing with optimized document ordering. In: Proceedings of the 18th International Conference on World Wide Web, pp. 401–410. ACM (2009)Google Scholar
  26. 26.
    Zukowski, M., Heman, S., Nes, N., Boncz, P.: Super-scalar RAM-CPU cache compression. In: ICDE’06. Proceedings of the 22nd International Conference on Data Engineering, pp. 59–59. IEEE (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Nicolaus Copernicus UniversityToruńPoland
  2. 2.Warsaw University of TechnologyWarsawPoland

Personalised recommendations