Skip to main content

Finite-Interval and Partial Stochastic Realization Theory

  • Chapter
  • 2452 Accesses

Part of the book series: Series in Contemporary Mathematics ((SCMA,volume 1))

Abstract

In Sect. 11.2 we described a procedure for computing the triplet .A;C;CN / of a stationary process y starting from the Hankel matrix H1 formed from the infinite covariance sequence .ƒ0;ƒ1;ƒ2; : : : /. This procedure leads, via the solution of the associated linear matrix inequality (6.102), to the construction of all minimal stochastic realizations of the process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. Akhiezer, N.I.: The Classical Moment Problem. Hafner, New York (1965)

    MATH  Google Scholar 

  2. Anderson, B.D.O.: The inverse problem of stationary covariance generation. J. Stat. Phys. 1, 133–147 (1969)

    Article  Google Scholar 

  3. Avventi, E.: Spectral moment problems: generalizations, implementation and tuning. PhD thesis, Royal Institute of Technology (2011)

    Google Scholar 

  4. Badawi, F.A., Lindquist, A.: A stochastic realization approach to the discrete-time Mayne-Fraser smoothing formula. In: Frequency Domain and State Space Methods for Linear Systems, Stockholm, 1985, pp. 251–262. North-Holland, Amsterdam (1986)

    Google Scholar 

  5. Badawi, F.A., Lindquist, A., Pavon, M.: A stochastic realization approach to the smoothing problem. IEEE Trans. Autom. Control 24(6), 878–888 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  6. Blomqvist, A., Lindquist, A., Nagamune, R.: Matrix-valued Nevanlinna-Pick interpolation with complexity constraint: an optimization approach. IEEE Trans. Autom. Control 48(12), 2172–2190 (2003)

    Article  MathSciNet  Google Scholar 

  7. Brockett, R.W.: Finite Dimensional Linear Systems. Wiley, New York (1970)

    MATH  Google Scholar 

  8. Byrnes, C.I., Enqvist, P., Lindquist, A.: Cepstral coefficients, covariance lags and pole-zero models for finite data strings. IEEE Trans. Signal Process. 50, 677–693 (2001)

    MathSciNet  Google Scholar 

  9. Byrnes, C.I., Enqvist, P., Lindquist, A.: Identifiability and well-posedness of shaping-filter parameterizations: a global analysis approach. SIAM J. Control Optim. 41, 23–59 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Byrnes, C.I., Gusev, S.V., Lindquist, A.: A convex optimization approach to the rational covariance extension problem. SIAM J. Control Optim. 37, 211–229 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Byrnes, C.I., Gusev, S.V., Lindquist, A.: From finite covariance windows to modeling filters: a convex optimization approach. SIAM Rev. 43, 645–675 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Byrnes, C.I., Lindquist, A.: On the partial stochastic realization problem. IEEE Trans. Autom. Control AC-42, 1049–1069 (1997)

    Article  MathSciNet  Google Scholar 

  13. Byrnes, C.I., Lindquist, A.: On the duality between filtering and Nevanlinna-Pick interpolation. SIAM J. Control Optim. 39, 757–775 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Byrnes, C.I., Lindquist, A.: Important moments in systems and control. SIAM J. Control Optim. 47, 2458–2469 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Byrnes, C.I., Lindquist, A.: The moment problem for rational measures: convexity in the spirit of Krein. In: Adamyan, V.M., Kochubei, A., Gohberg, I., Popov, G., Berezansky, Y., Gorbachuk, V., Gorbachuk, M., Langer, H. (eds.) Modern Analysis and Application: Mark Krein Centenary Conference, Vol. I: Operator Theory and Related Topics. Volume 190 of Operator Theory Advances and Applications, pp. 157–169. Birkhäuser, Basel (2009)

    Google Scholar 

  16. Byrnes, C.I., Lindquist, A., Gusev, S.V., Matveev, A.S.: A complete parameterization of all positive rational extensions of a covariance sequence. IEEE Trans. Autom. Control AC-40, 1841–1857 (1995)

    Article  MathSciNet  Google Scholar 

  17. Durbin, J.: The fitting of time-series models. Rev. Int. Inst. Stat. 28, 233–244 (1960)

    Article  MATH  Google Scholar 

  18. Enqvist, P.: Spectral estimation by geometric, topological and optimization methods. PhD thesis, Royal Institute of Technology (2001)

    Google Scholar 

  19. Enqvist, P.: A convex optimization approach to ARMA(n,m) model design from covariance and cepstrum data. SIAM J. Control Optim. 43, 1011–1036 (2006)

    Article  MathSciNet  Google Scholar 

  20. Georgiou, T.T.: Partial realization of covariance sequences. PhD thesis, CMST, University of Florida (1983)

    Google Scholar 

  21. Georgiou, T.T.: Realization of power spectra from partial covariances. IEEE Trans. Acoust. Speech Signal Process. 35, 438–449 (1987)

    Article  MATH  Google Scholar 

  22. Georgiou, T.T.T.: Relative entropy and the multivariable multidimensional moment problem. IEEE Trans. Inf. Theory 52(3), 1052–1066 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Georgiou, T.T., Lindquist, A.: Kullback-Leibler approximation of spectral density functions. IEEE Trans. Inf. Theory 49, 2910–2917 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Geronimus, L.Ya.: Orthogonal Polynomials. Consultant Bureau, New York (1961)

    Google Scholar 

  25. Gragg, W.B., Lindquist, A.: On the partial realization problem. Linear Algebra Appl. 50, 277–319 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hadamard, J.: Sur les correspondances ponctuelles, pp. 383–384. Oeuvres, Editions du Centre Nationale de la Researche Scientifique, Paris (1968)

    Google Scholar 

  27. Ho, B.L., Kalman, R.E.: Effective construction of linear state-variable models from input/output data. Regelungstechnik 12, 545–548 (1966)

    Google Scholar 

  28. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. A.S.M.E. J. Basic Eng. 82, 35–45 (1960)

    Google Scholar 

  29. Kalman, R.E.: Lyapunov functions for the problem of Lur′ e in automatic control. Proc. Nat. Acad. Sci. U.S.A. 49, 201–205 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kalman, R.E.: On minimal partial realizations of a linear input/output map. In: Kalman, R.E., de Claris, N. (eds.) Aspects of Network and System Theory, pp. 385–408. Holt, Rinehart and Winston, New York, USA, Reinhart and Winston (1971)

    Google Scholar 

  31. Kalman, R.E.: Realization of covariance sequences. In: Proceedings of the Toeplitz Memorial Conference, Tel Aviv (1981)

    Google Scholar 

  32. Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in Mathematical System Theory. McGraw-Hill, New York (1969)

    MATH  Google Scholar 

  33. Levinson, N.: The Wiener r.m.s. (root means square) error criterion in filter design and prediction. J. Math. Phys. 25, 261–278 (1947)

    Google Scholar 

  34. Lindquist, A.: A new algorithm for optimal filtering of discrete-time stationary processes. SIAM J. Control 12, 736–746 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  35. Lindquist, A.: On Fredholm integral equations, Toeplitz equations and Kalman-Bucy filtering. Appl. Math. Optim. 1(4), 355–373 (1974/1975)

    Google Scholar 

  36. Lindquist, A.: Some reduced-order non-Riccati equations for linear least-squares estimation: the stationary, single-output case. Int. J. Control 24(6), 821–842 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  37. Lindquist, A., Picci, G.: Canonical correlation analysis, approximate covariance extension, and identification of stationary time series. Autom. J. IFAC 32(5), 709–733 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  38. Lindquist, A., Picci, G.: Geometric methods for state space identification. In: Bittanti, S., Picci, G. (eds.) Identification, Adaptation, Learning: The Science of Learning Models from Data. Volume F153 of NATO ASI Series, pp. 1–69. Springer, Berlin (1996)

    Chapter  Google Scholar 

  39. Musicus, B.R., Kabel, A.M.: Maximum entropy pole-zero estimation. Technical report 510, MIT Research Laboratory of Electronics (1985)

    Google Scholar 

  40. Oppenheim, A.V., Shafer, R.W.: Digital Signal Processing. Prentice Hall, London (1975)

    MATH  Google Scholar 

  41. Robinson, E.A.: Multichannel Time Series Analysis with Digital Computer Programs. Holden-Day Series in Time Series Analysis. Holden-Day, San Fransisco (1967)

    MATH  Google Scholar 

  42. Robinson, E.A.: Statistical Communication and Detection with Spectral Reference to Digital Data Processing of Radar and Seismic Signals. Hafner, New York (1967)

    Google Scholar 

  43. Tether, A.: Construction of minimal state variable models from input-output data. IEEE Trans. Autom. Control AC-15, 427–436 (1971)

    MathSciNet  Google Scholar 

  44. Whittle, P.: On the fitting multivariate autoregressions and the approximate canonical factorization of a spectral density matrix. Biometrika 50, 129–134 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  45. Wiggins, R.A., Robinson, E.A.: Recursive solutions to the multichannel filtering problem. J. Geophys. Res. 70, 1885–1891 (1965)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lindquist, A., Picci, G. (2015). Finite-Interval and Partial Stochastic Realization Theory. In: Linear Stochastic Systems. Series in Contemporary Mathematics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45750-4_12

Download citation

Publish with us

Policies and ethics