Fiber-Shaped Polymer Solar Cell

  • Huisheng Peng
Part of the Nanostructure Science and Technology book series (NST)


Currently, fiber-shaped solar cells are materialized in two types of solar cells, the polymer solar cell (PSC) and the dye-sensitized solar cell (DSC), whose structures are technically feasible for transforming into one-dimensional configuration. In this chapter, we discuss the polymer solar cell first including its developing history and working mechanisms. It is widely acknowledged that the electrode plays a pivotal role in the performance of solar cells. On this account, we proceed from remolding different materials into fiber shape as electrodes and shed light on their impact on flexibility, stability, and power conversion efficiency (PCE) of the polymer solar cell. Moreover, we present our attempts towards application pertaining to wearable devices. Specifically, we fabricated the stretchable polymer solar cells and integrated the solar cell with supercapacitors, which is discussed in detail in this chapter.


High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Power Conversion Efficiency TiO2 Nanotubes Polymer Solar Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tang CW (1979) Multilayer organic photovoltaic elements. US Patent 4,164,431Google Scholar
  2. 2.
    Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1993) Semiconducting polymers (as donors) and buckminsterfullerene (as acceptor): photoinduced electron transfer and heterojunction devices. Synth Met 59(3):333–352CrossRefGoogle Scholar
  3. 3.
    You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C-C, Gao J, Li G, Yang Y (2013) A polymer tandem solar cell with 10.6 % power conversion efficiency. Nat Commun 4:1446CrossRefGoogle Scholar
  4. 4.
    Chen C-C, Chang W-H, Yoshimura K, Ohya K, You J, Gao J, Hong Z, Yang Y (2014) An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11 %. Adv Mater 26(32):5670–5677CrossRefGoogle Scholar
  5. 5.
    Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107(4):1324–1338CrossRefGoogle Scholar
  6. 6.
    Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photonics 6(3):153–161CrossRefzbMATHGoogle Scholar
  7. 7.
    Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, Heeger AJ (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317(5835):222–225CrossRefGoogle Scholar
  8. 8.
    Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258(5087):1474–1476CrossRefGoogle Scholar
  9. 9.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243):1789–1791CrossRefGoogle Scholar
  10. 10.
    Wudl F, Srdanov G (1993) Conducting polymer formed of poly (2-methoxy, 5-(2′-ethyl-hexyloxy)-p-phenylenevinylene). US Patent 5,189,136Google Scholar
  11. 11.
    Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5 % efficient organic plastic solar cells. Appl Phys Lett 78(6):841–843CrossRefGoogle Scholar
  12. 12.
    Padinger F, Rittberger RS, Sariciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Funct Mater 13(1):85–88CrossRefGoogle Scholar
  13. 13.
    Bao Z, Dodabalapur A, Lovinger AJ (1996) Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl Phys Lett 69(26):4108–4110CrossRefGoogle Scholar
  14. 14.
    Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868CrossRefGoogle Scholar
  15. 15.
    Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15(10):1617–1622CrossRefGoogle Scholar
  16. 16.
    Brabec CJ, Shaheen SE, Winder C, Sariciftci NS, Denk P (2002) Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl Phys Lett 80(7):1288–1290CrossRefGoogle Scholar
  17. 17.
    Za T, Zhang W, Zhang Z, Qian D, Huang Y, Hou J, Li Y (2012) High-performance inverted polymer solar cells with solution-processed titanium chelate as electron-collecting layer on ITO electrode. Adv Mater 24(11):1476–1481CrossRefGoogle Scholar
  18. 18.
    Kuwabara T, Nakayama T, Uozumi K, Yamaguchi T, Takahashi K (2008) Highly durable inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode inserted between ITO and organic layer. Sol Energy Mater Sol Cells 92(11):1476–1482CrossRefGoogle Scholar
  19. 19.
    Sun Y, Seo JH, Takacs CJ, Seifter J, Heeger AJ (2011) Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer. Adv Mater 23(14):1679–1683CrossRefGoogle Scholar
  20. 20.
    Colsmann A, Reinhard M, Kwon T-H, Kayser C, Nickel F, Czolk J, Lemmer U, Clark N, Jasieniak J, Holmes AB, Jones D (2012) Inverted semi-transparent organic solar cells with spray coated, surfactant free polymer top-electrodes. Sol Energy Mater Sol Cells 98:118–123CrossRefGoogle Scholar
  21. 21.
    Lu L, Xu T, Chen W, Lee JM, Luo Z, Jung IH, Park HI, Kim SO, Yu L (2013) The role of N-doped multiwall carbon nanotubes in achieving highly efficient polymer bulk heterojunction solar cells. Nano Lett 13(6):2365–2369CrossRefGoogle Scholar
  22. 22.
    Jung YS, Hwang Y-H, Javey A, Pyo M (2011) PCBM-grafted MWNT for enhanced electron transport in polymer solar cells. J Electrochem Soc 158(3):A237–A240CrossRefGoogle Scholar
  23. 23.
    Höfle S, Bruns M, Strässle S, Feldmann C, Lemmer U, Colsmann A (2013) Tungsten oxide buffer layers fabricated in an inert sol-gel process at room-temperature for blue organic light-emitting diodes. Adv Mater 25(30):4113–4116CrossRefGoogle Scholar
  24. 24.
    Bindl DJ, Ferguson AJ, Wu M-Y, Kopidakis N, Blackburn JL, Arnold MS (2013) Free carrier generation and recombination in polymer wrapped semiconducting carbon nanotube films and heterojunctions. J Phys Chem Lett 4(21):3550–3559Google Scholar
  25. 25.
    Stylianakis MM, Kymakis E (2012) Efficiency enhancement of organic photovoltaics by addition of carbon nanotubes into both active and hole transport layer. Appl Phys Lett 100(9):093301CrossRefGoogle Scholar
  26. 26.
    Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10 % energy-conversion efficiency. Adv Mater 18(6):789–794CrossRefGoogle Scholar
  27. 27.
    Yun J-J, Jung H-S, Kim S-H, Han E-M, Vaithianathan V, Jenekhe SA (2005) Chlorophyll-layer-inserted poly(3-hexyl-thiophene) solar cell having a high light-to-current conversion efficiency up to 1.48 %. Appl Phys Lett 87(12):123102CrossRefGoogle Scholar
  28. 28.
    Zhou Q, Hou Q, Zheng L, Deng X, Yu G, Cao Y (2004) Fluorene-based low band-gap copolymers for high performance photovoltaic devices. Appl Phys Lett 84(10):1653–1655CrossRefGoogle Scholar
  29. 29.
    Lee MR, Eckert RD, Forberich K, Dennler G, Brabec CJ, Gaudiana RA (2009) Solar power wires based on organic photovoltaic materials. Science 324(5924):232–235CrossRefzbMATHGoogle Scholar
  30. 30.
    Liu D, Zhao M, Li Y, Bian Z, Zhang L, Shang Y, Xia X, Zhang S, Yun D, Liu Z, Cao A, Huang C (2012) Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes. ACS Nano 6(12):11027–11034Google Scholar
  31. 31.
    Liu D, Li Y, Zhao S, Cao A, Zhang C, Liu Z, Bian Z, Liu Z, Huang C (2013) Single-layer graphene sheets as counter electrodes for fiber-shaped polymer solar cells. RSC Adv 3(33):13720–13727CrossRefGoogle Scholar
  32. 32.
    Liu J, Namboothiry MAG, Carroll DL (2007) Optical geometries for fiber-based organic photovoltaics. Appl Phys Lett 90(13):133515CrossRefGoogle Scholar
  33. 33.
    Bedeloglu A, Demir A, Bozkurt Y, Sariciftci NS (2010) A photovoltaic fiber design for smart textiles. Text Res J 80(11):1065–1074CrossRefGoogle Scholar
  34. 34.
    Chen T, Qiu L, Li H, Peng H (2012) Polymer photovoltaic wires based on aligned carbon nanotube fibers. J Mater Chem 22(44):23655–23658CrossRefGoogle Scholar
  35. 35.
    Zhang Z, Yang Z, Wu Z, Guan G, Pan S, Zhang Y, Li H, Deng J, Sun B, Peng H (2014) Weaving efficient polymer solar cell wires into flexible power textiles. Adv Energy Mater 4(11):1301750Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Huisheng Peng
    • 1
  1. 1.Department of Macromolecular ScienceFudan UniversityShanghaiChina

Personalised recommendations