Skip to main content

Fiber-Shaped Dye-Sensitized Solar Cell

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

This chapter focuses on a burgeoning type of dye-sensitized solar cells (DSCs) with one-dimensional configuration. Distinguished from the conventional planar DSC, the fiber-shaped DSC exhibits a unique structure based on the use of fiber electrode. The working mechanism of DSC is discussed in the beginning. Then, we discuss the fabrication and performance of the two typical architectures in fiber-shaped DSC, i.e., twisted and coaxial DSCs. Next, the fiber-shaped DSC integrated with other functions is presented. Finally, the future development of fiber-shaped DSCs is summarized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McEvoy A, Grätzel M (1994) Sensitisation in photochemistry and photovoltaics. Sol Energy Mater Sol Cells 32(3):221–227

    Article  Google Scholar 

  2. Desilvestro J, Graetzel M, Kavan L, Moser J, Augustynski J (1985) Highly efficient sensitization of titanium dioxide. J Am Chem Soc 107(10):2988–2990

    Article  Google Scholar 

  3. O’regan B, Grfitzeli M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized. Nature 353:737–740

    Article  Google Scholar 

  4. Hagfeldt A, Graetzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95(1):49–68

    Article  Google Scholar 

  5. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663

    Article  Google Scholar 

  6. Cahen D, Hodes G, Grätzel M, Guillemoles JF, Riess I (2000) Nature of photovoltaic action in dye-sensitized solar cells. J Phys Chem B 104(9):2053–2059

    Article  Google Scholar 

  7. Peter LM (2007) Dye-sensitized nanocrystalline solar cells. Phys Chem Chem Phys 9(21):2630–2642

    Article  Google Scholar 

  8. Memming R (1984) Electron transfer process with excited molecules at semiconductor electrodes. Prog Surf Sci 17(1):7–73

    Article  Google Scholar 

  9. Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44(20):6841–6851

    Article  Google Scholar 

  10. Rosenbluth ML, Lewis NS (1989) “Ideal” behavior of the open circuit voltage of semiconductor/liquid junctions. J Phys Chem 93(9):3735–3740

    Article  Google Scholar 

  11. Sommeling P, O’regan B, Haswell R, Smit H, Bakker N, Smits J, Kroon J, Van Roosmalen J (2006) Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. J Phys Chem B 110(39):19191–19197

    Article  Google Scholar 

  12. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50(13):2904–2939

    Article  Google Scholar 

  13. Roy P, Kim D, Lee K, Spiecker E, Schmuki P (2010) TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2(1):45–59

    Article  Google Scholar 

  14. Zhu K, Neale NR, Miedaner A, Frank AJ (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett 7(1):69–74

    Article  Google Scholar 

  15. Jennings JR, Ghicov A, Peter LM, Schmuki P, Walker AB (2008) Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. J Am Chem Soc 130(40):13364–13372

    Article  Google Scholar 

  16. Quintana M, Edvinsson T, Hagfeldt A, Boschloo G (2007) Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime. J Phys Chem C 111(2):1035–1041

    Article  Google Scholar 

  17. Fujishima A, Honda K (1972) Photolysis-decomposition of water at the surface of an irradiated semiconductor. Nature 238(5385):37–38

    Article  Google Scholar 

  18. Grätzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344

    Article  Google Scholar 

  19. Baps B, Eber-Koyuncu M, Koyuncu M (2001) Ceramic based solar cells in fiber form. Key Eng Mater 206:937–940

    Google Scholar 

  20. Liu J, Namboothiry MA, Carroll DL (2007) Fiber-based architectures for organic photovoltaics. Appl Phys Lett 90(6):063501

    Article  Google Scholar 

  21. O’Connor B, Pipe KP, Shtein M (2008) Fiber based organic photovoltaic devices. Appl Phys Lett 92(19):193306

    Article  Google Scholar 

  22. Fan X, Chu Z, Wang F, Zhang C, Chen L, Tang Y, Zou D (2008) Wire‐shaped flexible dye‐sensitized solar cells. Adv Mater 20(3):592–595

    Article  Google Scholar 

  23. Chen T, Qiu L, Yang Z, Peng H (2013) Novel solar cells in a wire format. Chem Soc Rev 42(12):5031–5041

    Article  Google Scholar 

  24. Wang H, Liu Y, Li M, Huang H, Zhong M, Shen H (2009) Hydrothermal growth of large-scale macroporous TiO2 nanowires and its application in 3D dye-sensitized solar cells. Appl Phys A 97(1):25–29

    Article  Google Scholar 

  25. Liu Z, Misra M (2010) Dye-sensitized photovoltaic wires using highly ordered TiO2 nanotube arrays. ACS Nano 4(4):2196–2200

    Article  Google Scholar 

  26. Lv Z, Yu J, Wu H, Shang J, Wang D, Hou S, Fu Y, Wu K, Zou D (2012) Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array. Nanoscale 4(4):1248–1253

    Article  Google Scholar 

  27. Lv Z, Fu Y, Hou S, Wang D, Wu H, Zhang C, Chu Z, Zou D (2011) Large size, high efficiency fiber-shaped dye-sensitized solar cells. Phys Chem Chem Phys 13(21):10076–10083

    Article  Google Scholar 

  28. Fu Y, Lv Z, Hou S, Wu H, Wang D, Zhang C, Chu Z, Cai X, Fan X, Wang ZL (2011) Conjunction of fiber solar cells with groovy micro-reflectors as highly efficient energy harvesters. Energy Environ Sci 4(9):3379–3383

    Article  Google Scholar 

  29. Chen L, Zhou Y, Dai H, Li Z, Yu T, Liu J, Zou Z (2013) Fiber dye-sensitized solar cells consisting of TiO2 nanowires arrays on Ti thread as photoanodes through a low-cost, scalable route. J Mater Chem A 1(38):11790–11794

    Article  Google Scholar 

  30. Tao H, G-j F, W-j K, Zeng W, Wang J (2014) In-situ synthesis of TiO2 network nanoporous structure on Ti wire substrate and its application in fiber dye sensitized solar cells. J Power Sources 245:59–65

    Article  Google Scholar 

  31. Ramier J, Da Costa N, Plummer C, Leterrier Y, Månson J-A, Eckert R, Gaudiana R (2008) Cohesion and adhesion of nanoporous TiO2 coatings on titanium wires for photovoltaic applications. Thin Solid Films 516(8):1913–1919

    Article  Google Scholar 

  32. Ramier J, Plummer C, Leterrier Y, Månson J-A, Eckert B, Gaudiana R (2008) Mechanical integrity of dye-sensitized photovoltaic fibers. Renew Energy 33(2):314–319

    Article  Google Scholar 

  33. Hou S, Cai X, Fu Y, Lv Z, Wang D, Wu H, Zhang C, Chu Z, Zou D (2011) Transparent conductive oxide-less, flexible, and highly efficient dye-sensitized solar cells with commercialized carbon fiber as the counter electrode. J Mater Chem 21(36):13776–13779

    Article  Google Scholar 

  34. Zhang S, Ji C, Bian Z, Yu P, Zhang L, Liu D, Shi E, Shang Y, Peng H, Cheng Q (2012) Porous, platinum nanoparticle-adsorbed carbon nanotube yarns for efficient fiber solar cells. ACS Nano 6(8):7191–7198

    Article  Google Scholar 

  35. Cai X, Hou S, Wu H, Lv Z, Fu Y, Wang D, Zhang C, Kafafy H, Chu Z, Zou D (2012) All-carbon electrode-based fiber-shaped dye-sensitized solar cells. Phys Chem Chem Phys 14(1):125–130

    Article  Google Scholar 

  36. Cai X, Wu H, Hou S, Peng M, Yu X, Zou D (2013) Dye‐sensitized solar cells with vertically aligned TiO2 nanowire arrays grown on carbon fibers. ChemSusChem 7(2):474–482

    Article  Google Scholar 

  37. Yen C-Y, Lin Y-F, Liao S-H, Weng C-C, Huang C-C, Hsiao Y-H, Ma C-CM, Chang M-C, Shao H, Tsai M-C (2008) Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar cells. Nanotechnology 19(37):375305

    Article  Google Scholar 

  38. Zhang X, Li Q, Tu Y, Li Y, Coulter JY, Zheng L, Zhao Y, Jia Q, Peterson DE, Zhu Y (2007) Strong carbon‐nanotube fibers spun from long carbon‐nanotube arrays. Small 3(2):244–248

    Article  Google Scholar 

  39. Chen T, Wang S, Yang Z, Feng Q, Sun X, Li L, Wang ZS, Peng H (2011) Flexible, light‐weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell. Angew Chem Int Ed 50(8):1815–1819

    Article  Google Scholar 

  40. Cai F, Chen T, Peng H (2012) All carbon nanotube fiber electrode-based dye-sensitized photovoltaic wire. J Mater Chem 22(30):14856–14860

    Article  Google Scholar 

  41. Chen T, Qiu L, Cai Z, Gong F, Yang Z, Wang Z, Peng H (2012) Intertwined aligned carbon nanotube fiber based dye-sensitized solar cells. Nano Lett 12(5):2568–2572

    Article  Google Scholar 

  42. Wang Y, Liu Y, Yang H, Wang H, Shen H, Li M, Yan J (2010) An investigation of DNA-like structured dye-sensitized solar cells. Curr Appl Phys 10(1):119–123

    Article  Google Scholar 

  43. Chen T, Qiu L, Kia HG, Yang Z, Peng H (2012) Designing aligned inorganic nanotubes at the electrode interface: towards highly efficient photovoltaic wires. Adv Mater 24(34):4623–4628

    Article  Google Scholar 

  44. Yoon CH, Vittal R, Lee J, Chae W-S, Kim K-J (2008) Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode. Electrochim Acta 53(6):2890–2896

    Article  Google Scholar 

  45. Hsieh T-L, Chen H-W, Kung C-W, Wang C-C, Vittal R, Ho K-C (2012) A highly efficient dye-sensitized solar cell with a platinum nanoflowers counter electrode. J Mater Chem 22(12):5550–5559

    Article  Google Scholar 

  46. Huang S, Li L, Yang Z, Zhang L, Saiyin H, Chen T, Peng H (2011) A new and general fabrication of an aligned carbon nanotube/polymer film for electrode applications. Adv Mater 23(40):4707–4710

    Article  Google Scholar 

  47. Li L, Yang Z, Gao H, Zhang H, Ren J, Sun X, Chen T, Kia HG, Peng H (2011) Vertically aligned and penetrated carbon nanotube/polymer composite film and promising electronic applications. Adv Mater 23(32):3730–3735

    Article  Google Scholar 

  48. Huang S, Yang Z, Zhang L, He R, Chen T, Cai Z, Luo Y, Lin H, Cao H, Zhu X (2012) A novel fabrication of a well distributed and aligned carbon nanotube film electrode for dye-sensitized solar cells. J Mater Chem 22(33):16833–16838

    Article  Google Scholar 

  49. Sun X, Chen T, Yang Z, Peng H (2012) The alignment of carbon nanotubes: an effective route to extend their excellent properties to macroscopic scale. Acc Chem Res 46(2):539–549

    Article  Google Scholar 

  50. Yang Z, Li L, Lin H, Luo Y, He R, Qiu L, Ren J, Peng H (2012) Penetrated and aligned carbon nanotubes for counter electrodes of highly efficient dye-sensitized solar cells. Chem Phys Lett 549:82–85

    Article  Google Scholar 

  51. Guan G, Yang Z, Qiu L, Sun X, Zhang Z, Ren J, Peng H (2013) Oriented PEDOT: PSS on aligned carbon nanotubes for efficient dye-sensitized solar cells. J Mater Chem A 1(42):13268–13273

    Article  Google Scholar 

  52. Yang Z, Chen T, He R, Guan G, Li H, Qiu L, Peng H (2011) Aligned carbon nanotube sheets for the electrodes of organic solar cells. Adv Mater 23(45):5436–5439

    Article  Google Scholar 

  53. Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065):201–204

    Article  Google Scholar 

  54. Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov K (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655

    Article  Google Scholar 

  55. Gupta V, Chaudhary N, Srivastava R, Sharma GD, Bhardwaj R, Chand S (2011) Luminescent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc 133(26):9960–9963

    Article  Google Scholar 

  56. Kavan L, Yum J-H, Grätzel M (2011) Graphene nanoplatelets outperforming platinum as the electrocatalyst in co-bipyridine-mediated dye-sensitized solar cells. Nano Lett 11(12):5501–5506

    Article  Google Scholar 

  57. Yang Z, Sun H, Chen T, Qiu L, Luo Y, Peng H (2013) Photovoltaic wire derived from a graphene composite fiber achieving an 8.45 % energy conversion efficiency. Angew Chem Int Ed 52(29):7545–7548

    Article  Google Scholar 

  58. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240):872–876

    Article  Google Scholar 

  59. Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466(7305):470–473

    Article  Google Scholar 

  60. Yang Z, Liu M, Zhang C, Tjiu WW, Liu T, Peng H (2013) Carbon nanotubes bridged with graphene nanoribbons and their use in high‐efficiency dye‐sensitized solar cells. Angew Chem Int Ed 52(14):3996–3999

    Article  Google Scholar 

  61. Fang X, Yang Z, Qiu L, Sun H, Pan S, Deng J, Luo Y, Peng H (2014) Core-sheath carbon nanostructured fibers for efficient wire-shaped dye-sensitized solar cells. Adv Mater 26(11):1694–1698

    Article  Google Scholar 

  62. Pan S, Yang Z, Chen P, Fang X, Guan G, Zhang Z, Deng J, Peng H (2013) Carbon nanostructured fibers as counter electrodes in wire-shaped dye-sensitized solar cells. J Phys Chem C 118(30):16419–16425

    Article  Google Scholar 

  63. Wang M, Chamberland N, Breau L, Moser J-E, Humphry-Baker R, Marsan B, Zakeeruddin SM, Grätzel M (2010) An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat Chem 2(5):385–389

    Article  Google Scholar 

  64. Hamann TW, Ondersma JW (2011) Dye-sensitized solar cell redox shuttles. Energy Environ Sci 4(2):370–381

    Article  Google Scholar 

  65. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334(6056):629–634

    Article  Google Scholar 

  66. Pan S, Yang Z, Li H, Qiu L, Sun H, Peng H (2013) Efficient dye-sensitized photovoltaic wires based on an organic redox electrolyte. J Am Chem Soc 135(29):10622–10625

    Article  Google Scholar 

  67. Wang D, Hou S, Wu H, Zhang C, Chu Z, Zou D (2011) Fiber-shaped all-solid state dye sensitized solar cell with remarkably enhanced performance via substrate surface engineering and TiO2 film modification. J Mater Chem 21(17):6383–6388

    Article  Google Scholar 

  68. Li H, Yang Z, Qiu L, Fang X, Sun H, Chen P, Pan S, Peng H (2014) Stable wire-shaped dye-sensitized solar cells based on eutectic melts. J Mater Chem A 2:3841–3846

    Article  Google Scholar 

  69. Zhang S, Ji C, Bian Z, Liu R, Xia X, Yun D, Zhang L, Huang C, Cao A (2011) Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes. Nano Lett 11(8):3383–3387

    Article  Google Scholar 

  70. Sun H, Li H, You X, Yang Z, Deng J, Qiu L, Peng H (2014) Quasi-solid-state, coaxial, fiber-shaped dye-sensitized solar cells. J Mater Chem A 2(2):345–349

    Article  Google Scholar 

  71. Weintraub B, Wei Y, Wang ZL (2009) Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells. Angew Chem Int Ed 48(47):8981–8985

    Article  Google Scholar 

  72. Sun H, Yang Z, Chen X, Qiu L, You X, Chen P, Peng H (2013) Photovoltaic wire with high efficiency attached onto and detached from a substrate using a magnetic field. Angew Chem Int Ed 52(32):8276–8280

    Article  Google Scholar 

  73. Liu Y, Li M, Wang H, Zheng J, Xu H, Ye Q, Shen H (2010) Synthesis of TiO2 nanotube arrays and its application in mini-3D dye-sensitized solar cells. J Phys D Appl Phys 43(20):205103

    Article  Google Scholar 

  74. Yang Z, Deng J, Sun X, Li H, Peng H (2014) Stretchable, wearable dye‐sensitized solar cells. Adv Mater 26(17):2643–2647

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peng, H. (2015). Fiber-Shaped Dye-Sensitized Solar Cell. In: Fiber-Shaped Energy Harvesting and Storage Devices. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45744-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45744-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45743-6

  • Online ISBN: 978-3-662-45744-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics