Electrically Conducting Fiber

  • Huisheng Peng
Part of the Nanostructure Science and Technology book series (NST)


The transformation towards fiber shape starts from the fiber electrode. In this chapter, the requirements for fiber electrodes in fiber-shaped devices are first discussed. A wide variety of inorganic and organic materials as well as their composites are then compared for the preparation and property of fiber electrodes. Besides the conventional metals, more efforts are made to discuss various nanomaterial fibers based on nanostructured carbon such as carbon nanotube and graphene and polymers.


Graphene Oxide Carbon Fiber Graphene Sheet Composite Fiber Polymer Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hardin BE, Snaith HJ, McGehee MD (2012) The renaissance of dye-sensitized solar cells. Nat Photonics 6(3):162–169Google Scholar
  2. 2.
    Dou LT, You JB, Hong ZR, Xu Z, Li G, Street RA, Yang Y (2013) 25th anniversary article: a decade of organic/polymeric photovoltaic research. Adv Mater 25(46):6642–6671Google Scholar
  3. 3.
    Qiu L, Wu Q, Yang Z, Sun X, Zhang Y, Peng H (2014) Freestanding aligned carbon nanotube array grown on a large-area single-layered graphene sheet for efficient dye-sensitized solar cell. Small. doi: 10.1002/smll.201400703:n/a-n/a Google Scholar
  4. 4.
    Chen T, Yang ZB, Peng HS (2013) Integrated devices to realize energy conversion and storage simultaneously. ChemPhysChem 14(9):1777–1782Google Scholar
  5. 5.
    Chen T, Qiu LB, Yang ZB, Peng HS (2013) Novel solar cells in a wire format. Chem Soc Rev 42(12):5031–5041Google Scholar
  6. 6.
    Jost K, Dion G, Gogotsi Y (2014) Textile energy storage in perspective. J Mater Chem A 2(28):10776–10787Google Scholar
  7. 7.
    Thomas S, Deepak TG, Anjusree GS, Arun TA, Nair SV, Nair AS (2014) A review on counter electrode materials in dye-sensitized solar cells. J Mater Chem A 2(13):4474–4490Google Scholar
  8. 8.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959Google Scholar
  9. 9.
    Chen L, Zhou Y, Dai H, Li ZD, Yu T, Liu JG, Zou ZG (2013) Fiber dye-sensitized solar cells consisting of TiO2 nanowires arrays on Ti thread as photoanodes through a low-cost, scalable route. J Mater Chem A 1(38):11790–11794Google Scholar
  10. 10.
    Lv ZB, Fu YP, Hou SC, Wang D, Wu HW, Zhang C, Chu ZZ, Zou DC (2011) Large size, high efficiency fiber-shaped dye-sensitized solar cells. Phys Chem Chem Phys 13(21):10076–10083Google Scholar
  11. 11.
    Hou SC, Cai X, Wu HW, Yu X, Peng M, Yan K, Zou DC (2013) Nitrogen-doped graphene for dye-sensitized solar cells and the role of nitrogen states in triiodide reduction. Energy Environ Sci 6(11):3356–3362Google Scholar
  12. 12.
    Zhang S, Ji CY, Bian ZQ, Liu RH, Xia XY, Yun DQ, Zhang LH, Huang CH, Cao AY (2011) Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes. Nano Lett 11(8):3383–3387Google Scholar
  13. 13.
    Chen T, Qiu LB, Kia HG, Yang ZB, Peng HS (2012) Designing aligned inorganic nanotubes at the electrode interface: towards highly efficient photovoltaic wires. Adv Mater 24(34):4623–4628Google Scholar
  14. 14.
    Chen T, Qiu LB, Yang ZB, Cai ZB, Ren J, Li HP, Lin HJ, Sun XM, Peng HS (2012) An integrated “energy wire” for both photoelectric conversion and energy storage. Angew Chem Int Ed 51(48):11977–11980Google Scholar
  15. 15.
    Ramier J, Da Costa N, Plummer CJG, Leterrier Y, Manson JAE, Eckert R, Gaudiana R (2008) Cohesion and adhesion of nanoporous TiO2 coatings on titanium wires for photovoltaic applications. Thin Solid Films 516(8):1913–1919Google Scholar
  16. 16.
    Docampo P, Guldin S, Leijtens T, Noel NK, Steiner U, Snaith HJ (2014) Lessons learned: from dye-sensitized solar cells to all-solid-state hybrid devices. Adv Mater 26(24):4013–4030Google Scholar
  17. 17.
    Grimes CA (2007) Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem 17(15):1451–1457Google Scholar
  18. 18.
    Wang H, Liu Y, Li M, Huang H, Zhong MY, Shen H (2009) Hydrothermal growth of large-scale macroporous TiO2 nanowires and its application in 3D dye-sensitized solar cells. Appl Phys Mater Sci Process 97(1):25–29Google Scholar
  19. 19.
    Wang XF, Liu B, Liu R, Wang QF, Hou XJ, Chen D, Wang RM, Shen GZ (2014) Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew Chem Int Ed 53(7):1849–1853Google Scholar
  20. 20.
    Lee MR, Eckert RD, Forberich K, Dennler G, Brabec CJ, Gaudiana RA (2009) Solar power wires based on organic photovoltaic materials. Science 324(5924):232–235zbMATHGoogle Scholar
  21. 21.
    Fan X, Chu ZZ, Wang FZ, Zhang C, Chen L, Tang YW, Zou DC (2008) Wire-shaped flexible dye-sensitized solar cells. Adv Mater 20(3):592–595Google Scholar
  22. 22.
    Liu DY, Zhao MY, Li Y, Bian ZQ, Zhang LH, Shang YY, Xia XY, Zhang S, Yun DQ, Liu ZW, Cao AY, Huang CH (2012) Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes. ACS Nano 6(12):11027–11034Google Scholar
  23. 23.
    Fu YP, Lv ZB, Hou SC, Wu HW, Wang D, Zhang C, Zou DC (2012) TCO-free, flexible, and bifacial dye-sensitized solar cell based on low-cost metal wires. Adv Energy Mater 2(1):37–41Google Scholar
  24. 24.
    Dong X, Guo Z, Song Y, Hou M, Wang J, Wang Y, Xia Y (2014) Flexible and wire-shaped micro-supercapacitor based on Ni(OH)2-nanowire and ordered mesoporous carbon electrodes. Adv Funct Mater 24(22):3405–3412Google Scholar
  25. 25.
    Yu ZA, Thomas J (2014) Energy storing electrical cables: integrating energy storage and electrical conduction. Adv Mater 26(25):4279–4285Google Scholar
  26. 26.
    Huang SQ, Guo XZ, Huang XM, Zhang QX, Sun HC, Li DM, Luo YH, Meng QB (2011) Highly efficient fibrous dye-sensitized solar cells based on TiO2 nanotube arrays. Nanotechnology 22(31):315402Google Scholar
  27. 27.
    Wang D, Hou SC, Wu HW, Zhang C, Chu ZZ, Zou DC (2011) Fiber-shaped all-solid state dye sensitized solar cell with remarkably enhanced performance via substrate surface engineering and TiO2 film modification. J Mater Chem 21(17):6383–6388Google Scholar
  28. 28.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58Google Scholar
  29. 29.
    Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382(6586):54–56Google Scholar
  30. 30.
    Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84(24):5552–5555Google Scholar
  31. 31.
    Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87(21):215502Google Scholar
  32. 32.
    Liu LQ, Ma WJ, Zhang Z (2011) Macroscopic carbon nanotube assemblies: preparation, properties, and potential applications. Small 7(11):1504–1520Google Scholar
  33. 33.
    Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P (2000) Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290(5495):1331–1334Google Scholar
  34. 34.
    Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH (2003) Super-tough carbon-nanotube fibres – these extraordinary composite fibres can be woven into electronic textiles. Nature 423(6941):703–703Google Scholar
  35. 35.
    Dalton AB, Collins S, Razal J, Munoz E, Ebron VH, Kim BG, Coleman JN, Ferraris JP, Baughman RH (2004) Continuous carbon nanotube composite fibers: properties, potential applications, and problems. J Mater Chem 14(1):1–3Google Scholar
  36. 36.
    Ericson LM, Fan H, Peng HQ, Davis VA, Zhou W, Sulpizio J, Wang YH, Booker R, Vavro J, Guthy C, Parra-Vasquez ANG, Kim MJ, Ramesh S, Saini RK, Kittrell C, Lavin G, Schmidt H, Adams WW, Billups WE, Pasquali M, Hwang WF, Hauge RH, Fischer JE, Smalley RE (2004) Macroscopic, neat, single-walled carbon nanotube fibers. Science 305(5689):1447–1450Google Scholar
  37. 37.
    Davis VA, Parra-Vasquez ANG, Green MJ, Rai PK, Behabtu N, Prieto V, Booker RD, Schmidt J, Kesselman E, Zhou W, Fan H, Adams WW, Hauge RH, Fischer JE, Cohen Y, Talmon Y, Smalley RE, Pasquali M (2009) True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat Nanotechnol 4(12):830–834Google Scholar
  38. 38.
    Zhang SJ, Koziol KKK, Kinloch IA, Windle AH (2008) Macroscopic fibers of well-aligned carbon nanotubes by wet spinning. Small 4(8):1217–1222Google Scholar
  39. 39.
    Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AWK, Bengio EA, ter Waarbeek RF, de Jong JJ, Hoogerwerf RE, Fairchild SB, Ferguson JB, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto MJ, Pasquali M (2013) Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339(6116):182–186Google Scholar
  40. 40.
    Zheng LX, O’Connell MJ, Doorn SK, Liao XZ, Zhao YH, Akhadov EA, Hoffbauer MA, Roop BJ, Jia QX, Dye RC, Peterson DE, Huang SM, Liu J, Zhu YT (2004) Ultralong single-wall carbon nanotubes. Nat Mater 3(10):673–676Google Scholar
  41. 41.
    Zhang RF, Zhang YY, Zhang Q, Xie HH, Qian WZ, Wei F (2013) Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. ACS Nano 7(7):6156–6161Google Scholar
  42. 42.
    Zhu HW, Xu CL, Wu DH, Wei BQ, Vajtai R, Ajayan PM (2002) Direct synthesis of long single-walled carbon nanotube strands. Science 296(5569):884–886Google Scholar
  43. 43.
    Li YL, Kinloch IA, Windle AH (2004) Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668):276–278Google Scholar
  44. 44.
    Zhong XH, Li YL, Liu YK, Qiao XH, Feng Y, Liang J, Jin J, Zhu L, Hou F, Li JY (2010) Continuous multilayered carbon nanotube yarns. Adv Mater 22(6):692–696Google Scholar
  45. 45.
    Motta M, Moisala A, Kinloch IA, Windle AH (2007) High performance fibres from ‘Dog bone’ carbon nanotubes. Adv Mater 19(21):3721–3726Google Scholar
  46. 46.
    Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A (2007) High-performance carbon nanotube fiber. Science 318(5858):1892–1895Google Scholar
  47. 47.
    Ma WJ, Liu LQ, Yang R, Zhang TH, Zhang Z, Song L, Ren Y, Shen J, Niu ZQ, Zhou WY, Xie SS (2009) Monitoring a micromechanical process in macroscale carbon nanotube films and fibers. Adv Mater 21(5):603–608Google Scholar
  48. 48.
    Liu GT, Zhao YC, Deng K, Liu Z, Chu WG, Chen JR, Yang YL, Zheng KH, Huang HB, Ma WJ, Song L, Yang HF, Gu CZ, Rao GH, Wang C, Xie SS, Sun LF (2008) Highly dense and perfectly aligned single-walled carbon nanotubes fabricated by diamond wire drawing dies. Nano Lett 8(4):1071–1075Google Scholar
  49. 49.
    Ci L, Punbusayakul N, Wei JQ, Vajtai R, Talapatra S, Ajayan PM (2007) Multifunctional macroarchitectures of double-walled carbon nanotube fibers. Adv Mater 19(13):1719–1723Google Scholar
  50. 50.
    Zheng LX, Zhang XF, Li QW, Chikkannanavar SB, Li Y, Zhao YH, Liao XZ, Jia QX, Doorn SK, Peterson DE, Zhu YT (2007) Carbon-nanotube cotton for large-scale fibers. Adv Mater 19(18):2567–2570Google Scholar
  51. 51.
    Jiang KL, Li QQ, Fan SS (2002) Nanotechnology: spinning continuous carbon nanotube yarns – Carbon nanotubes weave their way into a range of imaginative macroscopic applications. Nature 419(6909):801–801Google Scholar
  52. 52.
    Zhang M, Fang SL, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH (2005) Strong, transparent, multifunctional, carbon nanotube sheets. Science 309(5738):1215–1219Google Scholar
  53. 53.
    Huynh CP, Hawkins SC (2010) Understanding the synthesis of directly spinnable carbon nanotube forests. Carbon 48(4):1105–1115Google Scholar
  54. 54.
    Zhang XB, Jiang KL, Teng C, Liu P, Zhang L, Kong J, Zhang TH, Li QQ, Fan SS (2006) Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv Mater 18(12):1505–1510Google Scholar
  55. 55.
    Ryu S, Lee Y, Hwang JW, Hong S, Kim C, Park TG, Lee H, Hong SH (2011) High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer. Adv Mater 23(17):1971–1975Google Scholar
  56. 56.
    Zhang Q, Wang DG, Huang JQ, Zhou WP, Luo GH, Qian WZ, Wei F (2010) Dry spinning yarns from vertically aligned carbon nanotube arrays produced by an improved floating catalyst chemical vapor deposition method. Carbon 48(10):2855–2861Google Scholar
  57. 57.
    Inoue Y, Kakihata K, Hirono Y, Horie T, Ishida A, Mimura H (2008) One-step grown aligned bulk carbon nanotubes by chloride mediated chemical vapor deposition. Appl Phys Lett 92(21):213113Google Scholar
  58. 58.
    Kim JH, Jang HS, Lee KH, Overzet LJ, Lee GS (2010) Tuning of Fe catalysts for growth of spin-capable carbon nanotubes. Carbon 48(2):538–547Google Scholar
  59. 59.
    Qiu LB, Sun XM, Yang ZB, Guo WH, Peng HS (2012) Preparation and application of aligned carbon nanotube/polymer composite material. Acta Chim Sin 70(14):1523–1532Google Scholar
  60. 60.
    Amama PB, Pint CL, Kim SM, McJilton L, Eyink KG, Stach EA, Hauge RH, Maruyama B (2010) Influence of alumina type on the evolution and activity of alumina-supported Fe catalysts in single-walled carbon nanotube carpet growth. ACS Nano 4(2):895–904Google Scholar
  61. 61.
    Jia JJ, Zhao JN, Xu G, Di JT, Yong ZZ, Tao YY, Fang CO, Zhang ZG, Zhang XH, Zheng LX, Li QW (2011) A comparison of the mechanical properties of fibers spun from different carbon nanotubes. Carbon 49(4):1333–1339Google Scholar
  62. 62.
    Zhang YY, Zou GF, Doorn SK, Htoon H, Stan L, Hawley ME, Sheehan CJ, Zhu YT, Jia QX (2009) Tailoring the morphology of carbon nanotube arrays: from spinnable forests to undulating foams. ACS Nano 3(8):2157–2162Google Scholar
  63. 63.
    Jiang KL, Feng C, Liu K, Fan SS (2007) A vapor-liquid-solid model for chemical vapor deposition growth of carbon nanotubes. J Nanosci Nanotechnol 7(4–5):1494–1504Google Scholar
  64. 64.
    Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2005) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Abstr Pap Am Chem Soc 229:U967–U967Google Scholar
  65. 65.
    Zhang S, Zhu L, Minus ML, Chae HG, Jagannathan S, Wong CP, Kowalik J, Roberson LB, Kumar S (2008) Solid-state spun fibers and yarns from 1-mm long carbon nanotube forests synthesized by water-assisted chemical vapor deposition. J Mater Sci 43(13):4356–4362Google Scholar
  66. 66.
    Kuznetsov AA, Fonseca AF, Baughman RH, Zakhidov AA (2011) Structural model for dry-drawing of sheets and yarns from carbon nanotube forests. ACS Nano 5(2):985–993Google Scholar
  67. 67.
    Zhu C, Cheng C, He YH, Wang L, Wong TL, Fung KK, Wang N (2011) A self-entanglement mechanism for continuous pulling of carbon nanotube yarns. Carbon 49(15):4996–5001Google Scholar
  68. 68.
    Liu K, Sun YH, Liu P, Wang JP, Li QQ, Fan SS, Jiang KL (2009) Periodically striped films produced from super-aligned carbon nanotube arrays. Nanotechnology 20(33):335705Google Scholar
  69. 69.
    Gilvaei AF, Hirahara K, Nakayama Y (2011) In-situ study of the carbon nanotube yarn drawing process. Carbon 49(14):4928–4935Google Scholar
  70. 70.
    Wei HM, Wei Y, Wu Y, Liu L, Fan SS, Jiang KL (2013) High-strength composite yarns derived from oxygen plasma modified super-aligned carbon nanotube arrays. Nano Res 6(3):208–215Google Scholar
  71. 71.
    Zhang M, Atkinson KR, Baughman RH (2004) Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700):1358–1361Google Scholar
  72. 72.
    Liu K, Sun YH, Zhou RF, Zhu HY, Wang JP, Liu L, Fan SS, Jiang KL (2010) Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology 21(4):045708Google Scholar
  73. 73.
    Tran CD, Humphries W, Smith SM, Huynh C, Lucas S (2009) Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process. Carbon 47(11):2662–2670Google Scholar
  74. 74.
    Liu K, Zhu F, Liu L, Sun YH, Fan SS, Jiang KL (2012) Fabrication and processing of high-strength densely packed carbon nanotube yarns without solution processes. Nanoscale 4(11):3389–3393Google Scholar
  75. 75.
    Liu K, Sun YH, Chen L, Feng C, Feng XF, Jiang KL, Zhao YG, Fan SS (2008) Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett 8(2):700–705Google Scholar
  76. 76.
    Beyerlein IJ, Porwal PK, Zhu YT, Hu K, Xu XF (2009) Scale and twist effects on the strength of nanostructured yarns and reinforced composites. Nanotechnology 20(48):485702Google Scholar
  77. 77.
    Zhao JN, Zhang XH, Di JT, Xu G, Yang XJ, Liu XY, Yong ZZ, Chen MH, Li QW (2010) Double-peak mechanical properties of carbon-nanotube fibers. Small 6(22):2612–2617Google Scholar
  78. 78.
    Zhang XF, Li QW, Holesinger TG, Arendt PN, Huang JY, Kirven PD, Clapp TG, DePaula RF, Liao XZ, Zhao YH, Zheng LX, Peterson DE, Zhu YT (2007) Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv Mater 19(23):4198–4201Google Scholar
  79. 79.
    Deng F, Lu WB, Zhao HB, Zhu YT, Kim BS, Chou TW (2011) The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite. Carbon 49(5):1752–1757Google Scholar
  80. 80.
    Behabtu N, Green MJ, Pasquali M (2008) Carbon nanotube-based neat fibers. Nano Today 3(5–6):24–34Google Scholar
  81. 81.
    Zhang XF, Li QW, Tu Y, Li YA, Coulter JY, Zheng LX, Zhao YH, Jia QX, Peterson DE, Zhu YT (2007) Strong carbon-nanotube fibers spun from long carbon-nanotube arrays. Small 3(2):244–248Google Scholar
  82. 82.
    Chen T, Cai ZB, Yang ZB, Li L, Sun XM, Huang T, Yu AS, Kia HG, Peng HS (2011) Nitrogen-doped carbon nanotube composite fiber with a core-sheath structure for novel electrodes. Adv Mater 23(40):4620–4625Google Scholar
  83. 83.
    Peng HS, Sun XM, Cai FJ, Chen XL, Zhu YC, Liao GP, Chen DY, Li QW, Lu YF, Zhu YT, Jia QX (2009) Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres. Nat Nanotechnol 4(11):738–741Google Scholar
  84. 84.
    Banerjee S, Chakravorty D (1998) Electrical resistivity of copper-silica nanocomposites synthesized by electrodeposition. J Appl Phys 84(2):1149–1151Google Scholar
  85. 85.
    Ma YG, Liu HJ, Ong CK (2006) Electron transport properties in CoAlO composite antidot arrays. Europhys Lett 76(6):1144–1150Google Scholar
  86. 86.
    Yang ZB, Sun XM, Chen XL, Yong ZZ, Xu G, He RX, An ZH, Li QW, Peng HS (2011) Dependence of structures and properties of carbon nanotube fibers on heating treatment. J Mater Chem 21(36):13772–13775Google Scholar
  87. 87.
    Meng FC, Zhao JN, Ye YT, Zhang XH, Li QW (2012) Carbon nanotube fibers for electrochemical applications: effect of enhanced interfaces by an acid treatment. Nanoscale 4(23):7464–7468Google Scholar
  88. 88.
    Lepro X, Ovalle-Robles R, Lima MD, Elias AL, Terrones M, Baughman RH (2012) Catalytic twist-spun yarns of nitrogen-doped carbon nanotubes. Adv Funct Mater 22(5):1069–1075Google Scholar
  89. 89.
    Sun H, Yang ZB, Chen XL, Qiu LB, You X, Chen PN, Peng HS (2013) Photovoltaic wire with high efficiency attached onto and detached from a substrate using a magnetic field. Angew Chem Int Ed 52(32):8276–8280Google Scholar
  90. 90.
    Lima MD, Fang SL, Lepro X, Lewis C, Ovalle-Robles R, Carretero-Gonzalez J, Castillo-Martinez E, Kozlov ME, Oh JY, Rawat N, Haines CS, Haque MH, Aare V, Stoughton S, Zakhidov AA, Baughman RH (2011) Biscrolling nanotube sheets and functional guests into yarns. Science 331(6013):51–55Google Scholar
  91. 91.
    Guo WH, Liu C, Sun XM, Yang ZB, Kia HG, Peng HS (2012) Aligned carbon nanotube/polymer composite fibers with improved mechanical strength and electrical conductivity. J Mater Chem 22(3):903–908Google Scholar
  92. 92.
    Li S, Zhang XH, Zhao JN, Meng FC, Xu G, Yong ZZ, Jia JJ, Zhang ZG, Li QW (2012) Enhancement of carbon nanotube fibres using different solvents and polymers. Compos Sci Technol 72(12):1402–1407Google Scholar
  93. 93.
    Chen T, Cai ZB, Qiu LB, Li HP, Ren J, Lin HJ, Yang ZB, Sun XM, Peng HS (2013) Synthesis of aligned carbon nanotube composite fibers with high performances by electrochemical deposition. J Mater Chem A 1(6):2211–2216Google Scholar
  94. 94.
    Randeniya LK, Bendavid A, Martin PJ, Tran CD (2010) Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity. Small 6(16):1806–1811Google Scholar
  95. 95.
    Xu G, Zhao JN, Li S, Zhang XH, Yong ZZ, Li QW (2011) Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers. Nanoscale 3(10):4215–4219Google Scholar
  96. 96.
    Zhang S, Ji CY, Bian ZQ, Yu PR, Zhang LH, Liu DY, Shi EZ, Shang YY, Peng HT, Cheng Q, Wang D, Huang CH, Cao AY (2012) Porous, platinum nanoparticle-adsorbed carbon nanotube yarns for efficient fiber solar cells. ACS Nano 6(8):7191–7198Google Scholar
  97. 97.
    Cai ZB, Li L, Ren J, Qiu LB, Lin HJ, Peng HS (2013) Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes. J Mater Chem A 1(2):258–261Google Scholar
  98. 98.
    Sun X, Sun H, Li H, Peng H (2013) Developing polymer composite materials: carbon nanotubes or graphene? Adv Mater 25(37):5153–5176Google Scholar
  99. 99.
    Weiss NO, Zhou H, Liao L, Liu Y, Jiang S, Huang Y, Duan X (2012) Graphene: an emerging electronic material. Adv Mater 24(43):5782–5825Google Scholar
  100. 100.
    Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224Google Scholar
  101. 101.
    Yang ZB, Sun H, Chen T, Qiu LB, Luo YF, Peng HS (2013) Photovoltaic wire derived from a graphene composite fiber achieving an 8.45 % energy conversion efficiency. Angew Chem Int Ed 52(29):7545–7548Google Scholar
  102. 102.
    Xu Z, Gao C (2011) Graphene chiral liquid crystals and macroscopic assembled fibres. Nat Commun 2:571Google Scholar
  103. 103.
    Xiang CS, Behabtu N, Liu YD, Chae HG, Young CC, Genorio B, Tsentalovich DE, Zhang CG, Kosynkin DV, Lomeda JR, Hwang CC, Kumar S, Pasquali M, Tour JM (2013) Graphene nanoribbons as an advanced precursor for making carbon fiber. ACS Nano 7(2):1628–1637Google Scholar
  104. 104.
    Cruz-Silva R, Morelos-Gomez A, Kim HI, Jang HK, Tristan F, Vega-Diaz S, Rajukumar LP, Elias AL, Perea-Lopez N, Suhr J, Endo M, Terrones M (2014) Super-stretchable graphene oxide macroscopic fibers with outstanding knotability fabricated by dry film scrolling. ACS Nano 8(6):5959–5967Google Scholar
  105. 105.
    Dong ZL, Jiang CC, Cheng HH, Zhao Y, Shi GQ, Jiang L, Qu LT (2012) Facile fabrication of light, flexible and multifunctional graphene fibers. Adv Mater 24(14):1856–1861Google Scholar
  106. 106.
    Carretero-Gonzalez J, Castillo-Martinez E, Dias-Lima M, Acik M, Rogers DM, Sovich J, Haines CS, Lepro X, Kozlov M, Zhakidov A, Chabal Y, Baughman RH (2012) Oriented graphene nanoribbon yarn and sheet from aligned multi-walled carbon nanotube sheets. Adv Mater 24(42):5695–5701Google Scholar
  107. 107.
    Xiang CS, Young CC, Wang X, Yan Z, Hwang CC, Cerioti G, Lin J, Kono J, Pasquali M, Tour JM (2013) Large flake graphene oxide fibers with unconventional 100 % knot efficiency and highly aligned small flake graphene oxide fibers. Adv Mater 25(33):4592–4597Google Scholar
  108. 108.
    Xu Z, Sun HY, Zhao XL, Gao C (2013) Ultrastrong fibers assembled from giant graphene oxide sheets. Adv Mater 25(2):188–193Google Scholar
  109. 109.
    Cong HP, Ren XC, Wang P, Yu SH (2012) Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers. Sci Rep 2:613Google Scholar
  110. 110.
    Xu Z, Liu Z, Sun HY, Gao C (2013) Highly electrically conductive Ag-doped graphene fibers as stretchable conductors. Adv Mater 25(23):3249–3253Google Scholar
  111. 111.
    Shin MK, Lee B, Kim SH, Lee JA, Spinks GM, Gambhir S, Wallace GG, Kozlov ME, Baughman RH, Kim SJ (2012) Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nat Commun 3:650Google Scholar
  112. 112.
    Frank E, Steudle LM, Ingildeev D, Sporl JM, Buchmeiser MR (2014) Carbon fibers: precursor systems, processing, structure, and properties. Angew Chem Int Ed 53(21):5262–5298Google Scholar
  113. 113.
    Hou SC, Cai X, Wu HW, Lv ZB, Wang D, Fu YP, Zou DC (2012) Flexible, metal-free composite counter electrodes for efficient fiber-shaped dye-sensitized solar cells. J Power Sources 215:164–169Google Scholar
  114. 114.
    Zhang F, Niu SM, Guo WX, Zhu G, Liu Y, Zhang XL, Wang ZL (2013) Piezo-phototronic Effect Enhanced Visible/UV Photodetector of a Carbon-Fiber/ZnO-CdS Double-Shell Microwire. ACS Nano 7(5):4537–4544Google Scholar
  115. 115.
    Cai X, Hou SC, Wu HW, Lv ZB, Fu YP, Wang D, Zhang C, Kafafy H, Chu ZZ, Zou DC (2012) All-carbon electrode-based fiber-shaped dye-sensitized solar cells. Phys Chem Chem Phys 14(1):125–130Google Scholar
  116. 116.
    Hamedi M, Forchheimer R, Inganas O (2007) Towards woven logic from organic electronic fibres. Nat Mater 6(5):357–362Google Scholar
  117. 117.
    Hou SC, Lv ZB, Wu HW, Cai X, Chu ZZ, Yiliguma ZDC (2012) Flexible conductive threads for wearable dye-sensitized solar cells. J Mater Chem 22(14):6549–6552Google Scholar
  118. 118.
    Kang TJ, Choi A, Kim DH, Jin K, Seo DK, Jeong DH, Hong SH, Park YW, Kim YH (2011) Electromechanical properties of CNT-coated cotton yarn for electronic textile applications. Smart Mater Struct 20(1):015004Google Scholar
  119. 119.
    Sun GZ, Zheng LX, An J, Pan YZ, Zhou JY, Zhan ZY, Pang JHL, Chua CK, Leong KF, Li L (2013) Clothing polymer fibers with well-aligned and high-aspect ratio carbon nanotubes. Nanoscale 5(7):2870–2874Google Scholar
  120. 120.
    Yang ZB, Deng J, Chen XL, Ren J, Peng HS (2013) A highly stretchable, fiber-shaped supercapacitor. Angew Chem Int Ed 52(50):13453–13457Google Scholar
  121. 121.
    Ma R, Lee J, Choi D, Moon H, Baik S (2014) Knitted fabrics made from highly conductive stretchable fibers. Nano Lett 14(4):1944–1951Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Huisheng Peng
    • 1
  1. 1.Department of Macromolecular ScienceFudan UniversityShanghaiChina

Personalised recommendations