Skip to main content

Ultrastructure and Pathoanatomy of the Rotator Cuff

  • Chapter
  • 4010 Accesses

Abstract

The rotator cuff is a complex musculotendinous unit, which plays a major role in glenohumeral joint stability and mobilization. Tears of the rotator cuff tendon and its subsequent changes of the rotator cuff muscle are common, and the incidence increases with age. Several structures such as the muscle, tendon, and bone may contribute to the development of a tear as well as on the outcome following a rotator cuff repair. Knowledge of these structures may help to improve rotator cuff healing after rotator cuff tear.

The goal of this chapter is to discuss the evidence which exists with regard to the pathophysiological changes in the muscle, tendon, and bone that lead to a rotator cuff rupture as well as the changes that occur in these structures after a tear has occurred.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jost B, Koch PP, Gerber C. Anatomy and functional aspects of the rotator interval. J Shoulder Elbow Surg. 2000;9(4):336–41.

    Article  CAS  PubMed  Google Scholar 

  2. Ward SR, Hentzen ER, Smallwood LH, et al. Rotator cuff muscle architecture: implications for glenohumeral stability. Clin Orthop Relat Res. 2006;448:157–63.

    Article  PubMed  Google Scholar 

  3. Kim SY, Boynton EL, Ravichandiran K, Fung LY, Bleakney R, Agur AM. Three-dimensional study of the musculotendinous architecture of supraspinatus and its functional correlations. Clin Anat. 2007;20:648–55.

    Article  PubMed  Google Scholar 

  4. Kim S, Bleakney R, Boynton E, et al. Investigation of the static and dynamic musculotendinous architecture of supraspinatus. Clin Anat. 2010;23(1):48–55.

    CAS  PubMed  Google Scholar 

  5. Roh MS, Wang VM, April EW, Pollock RG, Bigliani LU, Flatow EL. Anterior and posterior musculotendinous anatomy of the supraspinatus. J Shoulder Elbow Surg. 2000;9:436–40.

    Article  CAS  PubMed  Google Scholar 

  6. Meyer DC, Hoppeler H, von Rechenberg B, Gerber C. A pathomechanical concept explains muscle loss and fatty muscular changes following surgical tendon release. J Orthop Res: Off Publ Orthop Res Soc. 2004;22(5):1004–7.

    Article  Google Scholar 

  7. Zuo J, Sano H, Itoi E. Changes in pennation angle in rotator cuff muscles with torn tendons. J Orthop Sci: Off J Jpn Orthop Assoc. 2012;17(1):58–63.

    Article  Google Scholar 

  8. Gladstone JN, Bishop JY, Lo IK, Flatow EL. Fatty infiltration and atrophy of the rotator cuff do not improve after rotator cuff repair and correlate with poor functional outcome. Am J Sports Med. 2007;35(5):719–28.

    Article  PubMed  Google Scholar 

  9. Gerber C, Schneeberger AG, Hoppeler H, Meyer DC. Correlation of atrophy and fatty infiltration on strength and integrity of rotator cuff repairs: a study in thirteen patients. J Shoulder Elbow Surg. 2007;16(6):691–6.

    Article  PubMed  Google Scholar 

  10. Gerber C, Fuchs B, Hodler J. The results of repair of massive tears of the rotator cuff. J Bone Joint Surg Am. 2000;82-A(4):505–15.

    Google Scholar 

  11. Józsa L, Kannus P, Thöring J, Reffy A, Järvinen M, Kvist M. The effect of tenotomy and immobilisation on intramuscular connective tissue. A morphometric and microscopic study in rat calf muscles. J Bone Joint Surg. 1990;72:293–7.

    Google Scholar 

  12. Crawford GN. Some effects of tenotomy on adult striated muscles. J Anat. 1977;123(Pt 2):389–96.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Steinbacher P, Tauber M, Kogler S, Stoiber W, Resch H, Sanger AM. Effects of rotator cuff ruptures on the cellular and intracellular composition of the human supraspinatus muscle. Tissue Cell. 2010;42(1):37–41.

    Article  CAS  PubMed  Google Scholar 

  14. Schmutz S, Fuchs T, Regenfelder F, Steinmann P, Zumstein M, Fuchs B. Expression of atrophy mRNA relates to tendon tear size in supraspinatus muscle. Clin Orthop Relat Res. 2009;467(2):457–64.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Sacheck JM, Hyatt JP, Raffaello A, et al. Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. Faseb J. 2007;21(1):140–55.

    Article  CAS  PubMed  Google Scholar 

  16. Meyer DC, Gerber C, Von Rechenberg B, Wirth SH, Farshad M. Amplitude and strength of muscle contraction are reduced in experimental tears of the rotator cuff. Am J Sports Med. 2011;39(7):1456–61.

    Article  PubMed  Google Scholar 

  17. Gerber C, Meyer DC, Schneeberger AG, Hoppeler H, von Rechenberg B. Effect of tendon release and delayed repair on the structure of the muscles of the rotator cuff: an experimental study in sheep. J Bone Joint Surg Am. 2004;86-A(9):1973–82.

    CAS  PubMed  Google Scholar 

  18. Coleman SH, Fealy S, Ehteshami JR, et al. Chronic rotator cuff injury and repair model in sheep. J Bone Joint Surg Am. 2003;85-A(12):2391–402.

    PubMed  Google Scholar 

  19. Melis B, Nemoz C, Walch G. Muscle fatty infiltration in rotator cuff tears: descriptive analysis of 1688 cases. Orthop Traumatol Surg Res: OTSR. 2009;95(5):319–24.

    Article  CAS  PubMed  Google Scholar 

  20. Melis B, Wall B, Walch G. Natural history of infraspinatus fatty infiltration in rotator cuff tears. J Shoulder Elbow Surg. 2010;19(5):757–63.

    Article  PubMed  Google Scholar 

  21. Gerber C, Meyer DC, Frey E, et al. Neer Award 2007: Reversion of structural muscle changes caused by chronic rotator cuff tears using continuous musculotendinous traction. An experimental study in sheep. J Shoulder Elbow Surg. 2009;18:163–71.

    Article  PubMed  Google Scholar 

  22. Frey E, Regenfelder F, Sussmann P, et al. Adipogenic and myogenic gene expression in rotator cuff muscle of the sheep after tendon tear. J Orthop Res: Off Publ Orthop Res Soc. 2009;27(4):504–9.

    Article  CAS  Google Scholar 

  23. Vad VB, Southern D, Warren RF, Altchek DW, Dines D. Prevalence of peripheral neurologic injuries in rotator cuff tears with atrophy. J Shoulder Elbow Surg. 2003;12(4):333–6.

    Article  PubMed  Google Scholar 

  24. Albritton MJ, Graham RD, Richards RS, Basamania CJ. An anatomic study of the effects on the suprascapular nerve due to retraction of the supraspinatus muscle after a rotator cuff tear. J Shoulder Elbow Surg. 2003;12(5):497–500.

    Article  PubMed  Google Scholar 

  25. Lakemeier S, Reichelt JJ, Patzer T, Fuchs-Winkelmann S, Paletta JR, Schofer MD. The association between retraction of the torn rotator cuff and increasing expression of hypoxia inducible factor 1alpha and vascular endothelial growth factor expression: an immunohistological study. BMC Musculoskelet Disord. 2010;11:230.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kannus P, Jozsa L, Jarvinnen M. Basic science of tendons. In: Garrett Jr WE, Speer KP, Kirkendall DT, editors. Principles and practice of orthopaedic sports medicine. Philadelphia: Lippincott Williams & Wilkins; 2000. p. 21–37.

    Google Scholar 

  27. Lake SP, Miller KS, Elliott DM, Soslowsky LJ. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading. J Orthop Res. 2009;27:1596–602.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Lake SP, Miller KS, Elliott DM, Soslowsky LJ. Tensile properties and fiber alignment of human supraspinatus tendon in the transverse direction demonstrate inhomogeneity, nonlinearity, and regional isotropy. J Biomech. 2010;43:727–32.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Killian ML, Cavinatto L, Galatz LM, Thomopoulos S. The role of mechanobiology in tendon healing. J Shoulder Elbow Surg. 2012;21:228–37.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Thomopoulos S, Genin GM, Galatz LM. The development and morphogenesis of the tendon-to-bone insertion – what development can teach us about healing. J Musculoskelet Neuronal Interact. 2010;10:35–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Benjamin M, Evans EJ, Copp L. The histology of tendon attachments to bone in man. J Anat. 1986;149:89.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Koike Y, Trudel G, Uhthoff H. Formation of a new enthesis after attachment of the supraspinatus tendon: a quantitative histologic study in rabbits. J Orthop Res. 2005;23:1433–40.

    Article  PubMed  Google Scholar 

  33. Zhao S, Peng L, Xie G, Li D, Zhao J, Ning C. Effect of the interposition of calcium phosphate materials on tendon-bone healing during repair of chronic rotator cuff tear. Am J Sports Med. 2014;0363546514532781.

    Google Scholar 

  34. Ogata S, Uhthoff HK. Acromial enthesopathy and rotator cuff tear. A radiologic and histologic postmortem investigation of the coracoacromial arch. Clin Orthop Relat Res. 1990;254:39–48.

    PubMed  Google Scholar 

  35. Neviaser A, Andarawis-Puri N, Flatow E. Basic mechanisms of tendon fatigue damage. J Shoulder Elbow Surg. 2012;21:158–63.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Soslowsky LJ, Thomopoulos S, Tun S, et al. Neer Award 1999. Overuse activity injures the supraspinatus tendon in an animal model: a histologic and biomechanical study. J Shoulder Elbow Surg. 2000;9:79–84.

    Article  CAS  PubMed  Google Scholar 

  37. Kader D, Saxena A, Movin T, Maffulli N. Achilles tendinopathy: some aspects of basic science and clinical management. Br J Sports Med. 2002;36:239–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kumagai J, Sarkar K, Uhthoff HK. The collagen types in the attachment zone of rotator cuff tendons in the elderly: an immunohistochemical study. J Rheumatol. 1994;21:2096–100.

    CAS  PubMed  Google Scholar 

  39. Yuan J, Murrell GAC, Wei A-Q, Wang M-X. Apoptosis in rotator cuff tendonopathy. J Orthop Res: Off Publ Orthop Res Soc. 2002;20:1372–9.

    Article  Google Scholar 

  40. Nho SJ, Yadav H, Shindle MK, MacGillivray JD. Rotator cuff degeneration: etiology and pathogenesis. Am J Sports Med. 2008;36:987–93.

    Article  PubMed  Google Scholar 

  41. Morikawa D, Itoigawa Y, Nojiri H, et al. Contribution of oxidative stress to the degeneration of rotator cuff entheses. J Shoulder Elbow Surg. 2014;23:628–35.

    Article  PubMed  Google Scholar 

  42. Wu B, Chen J, Rosa TD, et al. Cellular response and extracellular matrix breakdown in rotator cuff tendon rupture. Arch Orthop Trauma Surg. 2011;131:405–11.

    Article  PubMed  Google Scholar 

  43. Fukuda H, Hamada K, Yamanaka K. Pathology and pathogenesis of bursal-side rotator cuff tears viewed from en bloc histologic sections. Clin Orthop Relat Res. 1990;75–80.

    Google Scholar 

  44. Goodmurphy CW, Osborn J, Akesson EJ, Johnson S, Stanescu V, Regan WD. An immunocytochemical analysis of torn rotator cuff tendon taken at the time of repair. J Shoulder Elbow Surg. 2003;12:368–74.

    Article  CAS  PubMed  Google Scholar 

  45. Funakoshi T, Iwasaki N, Kamishima T, et al. In vivo visualization of vascular patterns of rotator cuff tears using contrast-enhanced ultrasound. Am J Sports Med. 2010;38:2464–71.

    Article  PubMed  Google Scholar 

  46. Hashimoto T, Nobuhara K, Hamada T. Pathologic evidence of degeneration as a primary cause of rotator cuff tear. Clin Orthop Relat Res. 2003;415:111–20.

    Article  PubMed  Google Scholar 

  47. Castagna A, Cesari E, Garofalo R, et al. Matrix metalloproteases and their inhibitors are altered in torn rotator cuff tendons, but also in the macroscopically and histologically intact portion of those tendons. Muscles Ligaments Tendons J. 2013;3:132–8.

    PubMed Central  PubMed  Google Scholar 

  48. Dalton S, Cawston TE, Riley GP, Bayley IJ, Hazleman BL. Human shoulder tendon biopsy samples in organ culture produce procollagenase and tissue inhibitor of metalloproteinases. Ann Rheum Dis. 1995;54:571–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Gardner K, Arnoczky SP, Caballero O, Lavagnino M. The effect of stress-deprivation and cyclic loading on the TIMP/MMP ratio in tendon cells: an in vitro experimental study. Disabil Rehabil. 2008;30:1523–9.

    Article  PubMed  Google Scholar 

  50. Han Z, Boyle DL, Chang L, et al. c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J Clin Invest. 2001;108:73–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Murphy PG, Loitz BJ, Frank CB, Hart DA. Influence of exogenous growth factors on the synthesis and secretion of collagen types I and III by explants of normal and healing rabbit ligaments. Biochem Cell Biol. 1994;72:403–9.

    Article  CAS  PubMed  Google Scholar 

  52. Abrahamsson SO. Matrix metabolism and healing in the flexor tendon. Experimental studies on rabbit tendon. Scand J Plast Reconstr Surg Hand Surg Suppl. 1991;23:1–51.

    CAS  PubMed  Google Scholar 

  53. Meyer DC, Wieser K, Farshad M, Gerber C. Retraction of supraspinatus muscle and tendon as predictors of success of rotator cuff repair. Am J Sports Med. 2012;40:2242–7.

    Article  PubMed  Google Scholar 

  54. Stauber WT, Miller GR, Grimmett JG, Knack KK. Adaptation of rat soleus muscles to 4 wk of intermittent strain. J Appl Physiol (1985). 1994;77:58–62.

    CAS  Google Scholar 

  55. Oh JH, Chung SW, Kim SH, Chung JY, Kim JY. 2013 Neer Award: effect of the adipose-derived stem cell for the improvement of fatty degeneration and rotator cuff healing in rabbit model. J Shoulder Elbow Surg. 2014;23:445–55.

    Article  PubMed  Google Scholar 

  56. Kirchhoff C, Braunstein V, Milz S, et al. Age and gender as determinants of the bone quality of the greater tuberosity: a HR-pQCT Cadaver study. BMC Musculoskelet Disord. 2012;13:221.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Lee YS, Mihata T, Oh JH. Anatomically reproducible assessment of volumetric bone mineral density — based on clinical computed tomography. J Biomech. 2013;46:767–72.

    Article  PubMed  Google Scholar 

  58. Clavert P, Bouchaïb J, Sommaire C, Flurin P-H, Hardy P. Does bone density of the greater tuberosity change in patients over 70? Orthop Traumatol Surg Res. 2014;100:109–11.

    Article  PubMed  Google Scholar 

  59. Angeline ME, Ma R, Pascual-Garrido C, et al. Effect of diet-induced vitamin D deficiency on rotator cuff healing in a Rat model. Am J Sports Med. 2014;42:27–34.

    Article  PubMed  Google Scholar 

  60. Cadet ER, Vorys GC, Rahman RK, et al. Improving bone density at the rotator cuff footprint increases supraspinatus tendon failure stress in a rat model. J Orthop Res. 2010;28(3):308–14.

    PubMed  Google Scholar 

  61. Jiang Y, Zhao J, van Holsbeeck MT, Flynn MJ, Ouyang X, Genant HK. Trabecular microstructure and surface changes in the greater tuberosity in rotator cuff tears. Skeletal Radiol. 2002;31:522–8.

    Article  PubMed  Google Scholar 

  62. Cadet ER, Hsu JW, Levine WN, Bigliani LU, Ahmad CS. The relationship between greater tuberosity osteopenia and the chronicity of rotator cuff tears. J Shoulder Elbow Surg. 2008;17:73–7.

    Article  PubMed  Google Scholar 

  63. Thomopoulos S, Kim HM, Silva MJ, et al. Effect of bone morphogenetic protein 2 on tendon-to-bone healing in a canine flexor tendon model. J Orthop Res. 2012;30(11):1702–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Waldorff EI, Lindner J, Kijek TG, et al. Bone density of the greater tuberosity is decreased in rotator cuff disease with and without full-thickness tears. J Shoulder Elbow Surg. 2011;20:904–8.

    Article  PubMed  Google Scholar 

  65. Kirchhoff C, Braunstein V, Milz S, et al. Assessment of bone quality within the tuberosities of the osteoporotic humeral head: relevance for anchor positioning in rotator cuff repair. Am J Sports Med. 2010;38:564–9.

    Article  PubMed  Google Scholar 

  66. Grimberg J, Kany J. Latissimus dorsi tendon transfer for irreparable postero-superior cuff tears: current concepts, indications, and recent advances. Curr Rev Musculoskelet Med. 2014;7(1):22–32.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Castagna A, Garofalo R, Conti M, Borroni M, Snyder SJ. Arthroscopic rotator cuff repair using a triple-loaded suture anchor and a modified Mason-Allen technique (Alex stitch). Arthroscopy: J Arthrosc Relat Surg: Off Publ Arthroscopy Assoc North Am Int Arthrosc Assoc. 2007;23:440.e441–444.

    Google Scholar 

  68. Bigliani LU, Morrison DS, April EW. The morphology of the acromion and its relationship to rotator cuff tears. Orthop Trans. 1986;10:228

    Google Scholar 

  69. Nyffeler RW, Werner CM, Sukthankar A, Schmid MR, Gerber C. Association of a large lateral extension of the acromion with rotator cuff tears. J Bone Joint Surg Am. 2006;88(4):800–5.

    Article  PubMed  Google Scholar 

  70. Hughes RE, Bryant CR, Hall JM, et al. Glenoid inclination is associated with full-thickness rotator cuff tears. Clin Orthop Relat Res. 2003;407:86–91.

    Article  PubMed  Google Scholar 

  71. Moor BK, Bouaicha S, Rothenfluh DA, Sukthankar A, Gerber C. Is there an association between the individual anatomy of the scapula and the development of rotator cuff tears or osteoarthritis of the glenohumeral joint?: a radiological study of the critical shoulder angle. Bone Joint J. 2013;95-B(7):935–41.

    Article  CAS  PubMed  Google Scholar 

  72. Moor BK, Wieser K, Slankamenac K, Gerber C, Bouaicha S. Relationship of individual scapular anatomy and degenerative rotator cuff tears. J Shoulder Elbow Surg. 2014;23(4):536–41.

    Article  PubMed  Google Scholar 

  73. Schär MO, Rodeo SA. Shoulder Arthroscopy, Principles and Practice. Biology of Injury and Repair of Soft Tissues of the Shoulder. Milano G and Grasso A, editors. Springer London. Part 1, 2014:p. 59–72. doi:10.1007/978-1-4471-5427-3_5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias A. Zumstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 ISAKOS

About this chapter

Cite this chapter

Zumstein, M.A., Abeysekera, N., Pellegrino, P., Moor, B.K., Schär, M.O. (2015). Ultrastructure and Pathoanatomy of the Rotator Cuff. In: Bain, G., Itoi, E., Di Giacomo, G., Sugaya, H. (eds) Normal and Pathological Anatomy of the Shoulder. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45719-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45719-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45718-4

  • Online ISBN: 978-3-662-45719-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics