Skip to main content

Design of Reversible Adder-Subtractor and its Mapping in Optical Computing Domain

  • Chapter
  • First Online:
Transactions on Computational Science XXIV

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 8911))

Abstract

Reversible logic has promising applications in dissipation less optical computing, low power computing, quantum computing, etc. Reversible circuits do not lose information, and there is a one-to-one mapping between the input and the output vectors. In recent years, researchers have implemented reversible logic gates in optical domain as it provides high-speed and low-energy computations. Reversible gates can be easily fabricated at the chip level using optical computing. The optical implementation of reversible logic gates are based on semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer (MZI). The Mach-Zehnder interferometer has advantages such as high speed, low power, easy fabrication, and fast switching time. In this work, we present the optical implementation of an n bit reversible ripple carry adder. The optical reversible adder design is based on two new optical reversible gates referred to as optical reversible gate I (ORG-I) and optical reversible gate II (ORG-II) and the existing optical Feynman gate. The two new reversible gates ORG-I and ORG-II are proposed as they can implement a reversible adder with reduced optical cost which is the measure of number of MZIs switches and the propagation delay, and with zero overhead in terms of the number of ancilla inputs and the garbage outputs. The proposed optical reversible adder design based on the ORG-I and ORG-II reversible gates are compared and shown to be better than the other existing designs of reversible adder proposed in non-optical domain in terms of the number of MZIs, delay, the number of ancilla inputs, and the garbage outputs. A subtraction operation can be defined as \(a-b=\overline{\bar{a}+b}\) and \(a-b=a+\bar{b}+1\), respectively. Next, we propose the design methodologies based on (i) \(a-b=\overline{\bar{a}+b}\), and (ii) \(a-b=a+\bar{b}+1\), to design a reversible adder-subtractor that is controlled by the control signal to perform addition or subtraction operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Zayed, A., Cherri, A.: Improved all-optical modified signed-digit adders using semiconductor optical amplifier and mach-zehnder interferometer. Opt. Laser Technol. 42(5), 810–818 (2010)

    Article  Google Scholar 

  2. Banerjee, A., Pathak, A.: Optically implementable designs of reversible sequential devices. Indian J. Phys. 84, 1063–1068 (2010)

    Article  Google Scholar 

  3. Chattopadhyay, T.: All-optical modified fredkin gate. IEEE J. Sel. Top. Quantum Electron. PP(99), 1–8 (2011)

    Google Scholar 

  4. Cherri, A.K., Al-Zayed, A.S.: Circuit designs of ultra-fast all-optical modified signed-digit adders using semiconductor optical amplifier and mach-zehnder interferometer. Opt. Int. J. Light Electron Opt. 121(17), 1577–1585 (2010)

    Article  Google Scholar 

  5. Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-carry addition circuit, Oct 2004. http://arXiv.org/quant-ph/0410184

  6. Frank, M.: Approaching the physical limits of computing. In: Proceedings of ISMVL 2005, The Thirty-Fifth International Symposium on Multiple-Valued Logic, Calgary, Canada, pp. 168–185, May 2005

    Google Scholar 

  7. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Huang, Y., Kumar, P.: Interaction-free quantum optical fredkin gates in \(\chi ^{(2)}\) microdisks. IEEE J. Sel. Top. Quantum Electron. PP(99), 1–12 (2011)

    Google Scholar 

  9. Huang, Y., Kumar, P.: Fredkin gates in \(\chi (2)\) microdisks via quantum zeno blockade. In: Nonlinear Optics: Materials, Fundamentals and Applications, p. NWE1. Optical Society of America (2011)

    Google Scholar 

  10. Kostinski, N., Fok, M.P., Prucnal, P.R.: Experimental demonstration of an all-optical fiber-based fredkin gate. Opt. Lett. 34(18), 2766–2768 (2009)

    Article  Google Scholar 

  11. Kotiyal, S.: Design Methodologies For Reversible Logic Based Barrel Shifters. Master’s thesis, Univ. of South Florida, Tampa (2012). http://scholarcommons.usf.edu/etd/

  12. Kotiyal, S., Thapliyal, H., Ranganathan, N.: Mach-zehnder interferometer based design of all optical reversible binary adder. In: Design, Automation Test in Europe Conference Exhibition (DATE), 2012, pp. 721–726, March 2012

    Google Scholar 

  13. Kotiyal, S., Thapliyal, H., Ranganathan, N.: Circuit for reversible quantum multiplier based on binary tree optimizing ancilla and garbage bits. In: 2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems, pp. 545–550, Jan 2014

    Google Scholar 

  14. Kotiyal, S., Thapliyal, H., Ranganathan, N.: Efficient reversible NOR gates and their mapping in optical computing domain. Microelectron. J. 45(6), 825–834 (2014)

    Article  Google Scholar 

  15. Chang, L., Frank, D.J., Montoye, R.K., Koester, S.J., Ji, B.L., Coteus, P.W., Dennard, R.H., Haensch, W.: Practical strategies for power-efficient computing technologies. Proc. IEEE 98(2), 215–236 (2010)

    Article  Google Scholar 

  16. Maity, G.K., Roy, J.N., Maity, S.P.: Mach-zehnder interferometer based all-optical peres gate. In: Abraham, A., Mauri, J.L., Buford, J.F., Suzuki, J., Thampi, S.M. (eds.) ACC 2011, Part III. CCIS, vol. 192, pp. 249–258. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Maity, G., Chattopadhyay, T., Roy, J., Maity, S.: All-optical reversible multiplexer. In: 4th International Conference on Computers and Devices for Communication, 2009, CODEC 2009, pp. 1–3, Dec 2009

    Google Scholar 

  18. Thomsen, M.K., Glück, R., Axelsen, H.B.: Reversible arithmetic logic unit for quantum arithmetic. J. Phys. A: Math. Theor. 43(38), 2002 (2010)

    Article  Google Scholar 

  19. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  20. Parhami, B.: Fault-tolerant reversible circuits. In: Proceedings of 40th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, pp. 1726–1729, Nov 2006

    Google Scholar 

  21. Taraphdara, C., Chattopadhyay, T., Roy, J.: Mach-zehnder interferometer-based all-optical reversible logic gate. Opt. Laser Technol. 42(2), 249–259 (2010)

    Article  Google Scholar 

  22. Thapliyal, H.: Design, Synthesis and Test of Reversible Logic Circuits for Emerging Nanotechnologies. Ph.D. thesis, Univ. of South Florida, Tampa (2011). http://scholarcommons.usf.edu/etd/3379/

  23. Thapliyal, H., Ranganathan, N.: A new reversible design of BCD adder. In: Design, Automation Test in Europe Conference Exhibition (DATE), 2011, pp. 1–4, March 2011

    Google Scholar 

  24. Thapliyal, H., Ranganathan, N., Kotiyal, S.: Reversible logic based design and test of field coupled nanocomputing circuits. In: Anderson, N.G., Bhanja, S. (eds.) Field-Coupled Nanocomputing. LNCS, vol. 8280, pp. 133–172. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  25. Ma, X., Huang, J., Metra, C., Lombardi, F.: Reversible gates and testability of one dimensional arrays of molecular QCA. J. Elect. Test. 24(1–3), 1244–1245 (2008)

    Google Scholar 

  26. Ma, X., Huang, J., Metra, C., Lombardi, F.: Detecting multiple faults in one-dimensional arrays of reversible QCA gates. J. Elect. Test. 25(1), 39–54 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Kotiyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kotiyal, S., Thapliyal, H., Ranganathan, N. (2014). Design of Reversible Adder-Subtractor and its Mapping in Optical Computing Domain. In: Gavrilova, M., Tan, C., Thapliyal, H., Ranganathan, N. (eds) Transactions on Computational Science XXIV. Lecture Notes in Computer Science(), vol 8911. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45711-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45711-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45710-8

  • Online ISBN: 978-3-662-45711-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics