Skip to main content

Desmosomal Proteins as Autoantigens in Pemphigus

  • Chapter
  • First Online:
Blistering Diseases

Abstract

Pemphigus is a group of rare autoimmune blistering skin diseases mediated by autoantibodies against desmosomal members of the cadherin superfamily. There are several variants of pemphigus, each with unique clinical, histological, and immunologic features. Interestingly, when different desmosomal proteins are targeted by the autoimmune response, different clinical and histological features are seen. In this chapter we review the key intercellular junctions and proteins that mediate keratinocyte adhesion, the pemphigus group disease variants, and the specific antigenic protein(s) targeted in each and conclude with a discussion of pathogenic mechanisms that may explain how autoantibody binding these protein targets induces acantholysis and clinical disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amagai M. Adhesion molecules. I: keratinocyte-keratinocyte interactions; cadherins and pemphigus. J Invest Dermatol. 1995;104(1):146–52.

    CAS  PubMed  Google Scholar 

  2. Green KJ, Gaudry CA. Are desmosomes more than tethers for intermediate filaments? Nat Rev Mol Cell Biol. 2000;1(3):208–16.

    CAS  PubMed  Google Scholar 

  3. Patel SD, Chen CP, Bahna F, Honig B, Shapiro L. Cadherin-mediated cell-cell adhesion: sticking together as a family. Curr Opin Struct Biol. 2003;13(6):690–8.

    CAS  PubMed  Google Scholar 

  4. Blaschuk OW, Sullivan R, David S, Pouliot Y. Identification of a cadherin cell adhesion recognition sequence. Dev Biol. 1990;139(1):227–9.

    CAS  PubMed  Google Scholar 

  5. Runswick SK, O’Hare MJ, Jones L, Streuli CH, Garrod DR. Desmosomal adhesion regulates epithelial morphogenesis and cell positioning. Nat Cell Biol. 2001;3(9):823–30.

    CAS  PubMed  Google Scholar 

  6. Tselepis C, Chidgey M, North A, Garrod D. Desmosomal adhesion inhibits invasive behavior. Proc Natl Acad Sci U S A. 1998;95(14):8064–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Garrod D, Chidgey M, North A. Desmosomes: differentiation, development, dynamics and disease. Curr Opin Cell Biol. 1996;8(5):670–8.

    CAS  PubMed  Google Scholar 

  8. Hirano S, Nose A, Hatta K, Kawakami A, Takeichi M. Calcium-dependent cell-cell adhesion molecules (cadherins): subclass specificities and possible involvement of actin bundles. J Cell Biol. 1987;105(6 Pt 1):2501–10.

    CAS  PubMed  Google Scholar 

  9. Yap AS, Brieher WM, Gumbiner BM. Molecular and functional analysis of cadherin-based adherens junctions. Annu Rev Cell Dev Biol. 1997;13:119–46.

    CAS  PubMed  Google Scholar 

  10. Bornslaeger EA, Corcoran CM, Stappenbeck TS, Green KJ. Breaking the connection: displacement of the desmosomal plaque protein desmoplakin from cell-cell interfaces disrupts anchorage of intermediate filament bundles and alters intercellular junction assembly. J Cell Biol. 1996;134(4):985–1001.

    CAS  PubMed  Google Scholar 

  11. Hirai Y, Nose A, Kobayashi S, Takeichi M. Expression and role of E- and P-cadherin adhesion molecules in embryonic histogenesis. II. Skin morphogenesis. Development. 1989;105(2):271–7.

    CAS  PubMed  Google Scholar 

  12. Delva E, Tucker DK, Kowalczyk AP. The desmosome. Cold Spring Harb Perspect Biol. 2009;1(2):a002543.

    PubMed Central  PubMed  Google Scholar 

  13. Franke WW. Discovering the molecular components of intercellular junctions—a historical view. Cold Spring Harb Perspect Biol. 2009;1(3):a003061.

    PubMed Central  PubMed  Google Scholar 

  14. Skerrow CJ, Matoltsy AG. Isolation of epidermal desmosomes. J Cell Biol. 1974;63(2 Pt 1):515–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Skerrow CJ, Matoltsy AG. Chemical characterization of isolated epidermal desmosomes. J Cell Biol. 1974;63(2 Pt 1):524–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Skerrow CJ, Hunter I, Skerrow D. Dissection of the bovine epidermal desmosome into cytoplasmic protein and membrane glycoprotein domains. J Cell Sci. 1987;87(Pt 3):411–21.

    CAS  PubMed  Google Scholar 

  17. Koch PJ, Walsh MJ, Schmelz M, Goldschmidt MD, Zimbelmann R, Franke WW. Identification of desmoglein, a constitutive desmosomal glycoprotein, as a member of the cadherin family of cell adhesion molecules. Eur J Cell Biol. 1990;53(1):1–12.

    CAS  PubMed  Google Scholar 

  18. Dusek RL, Godsel LM, Green KJ. Discriminating roles of desmosomal cadherins: beyond desmosomal adhesion. J Dermatol Sci. 2007;45(1):7–21.

    CAS  PubMed  Google Scholar 

  19. Cowley CM, Simrak D, Marsden MD, King IA, Arnemann J, Buxton RS. A YAC contig joining the desmocollin and desmoglein loci on human chromosome 18 and ordering of the desmocollin genes. Genomics. 1997;42(2):208–16.

    CAS  PubMed  Google Scholar 

  20. Al-Amoudi A, Diez DC, Betts MJ, Frangakis AS. The molecular architecture of cadherins in native epidermal desmosomes. Nature. 2007;450(7171):832–7.

    CAS  PubMed  Google Scholar 

  21. Boggon TJ, Murray J, Chappuis-Flament S, Wong E, Gumbiner BM, Shapiro L. C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science. 2002;296(5571):1308–13.

    CAS  PubMed  Google Scholar 

  22. Amagai M, Karpati S, Klaus-Kovtun V, Udey MC, Stanley JR. Extracellular domain of pemphigus vulgaris antigen (desmoglein 3) mediates weak homophilic adhesion. J Invest Dermatol. 1994;102(4):402–8.

    CAS  PubMed  Google Scholar 

  23. Syed SE, Trinnaman B, Martin S, Major S, Hutchinson J, Magee AI. Molecular interactions between desmosomal cadherins. Biochem J. 2002;362(Pt 2):317–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Waschke J, Bruggeman P, Baumgartner W, Zillikens D, Drenckhahn D. Pemphigus foliaceus IgG causes dissociation of desmoglein 1-containing junctions without blocking desmoglein 1 transinteraction. J Clin Invest. 2005;115(11):3157–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Nie Z, Merritt A, Rouhi-Parkouhi M, Tabernero L, Garrod D. Membrane-impermeable cross-linking provides evidence for homophilic, isoform-specific binding of desmosomal cadherins in epithelial cells. J Biol Chem. 2011;286(3):2143–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Spindler V, Heupel WM, Efthymiadis A, et al. Desmocollin 3-mediated binding is crucial for keratinocyte cohesion and is impaired in pemphigus. J Biol Chem. 2009;284(44):30556–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Chitaev NA, Troyanovsky SM. Direct Ca2+-dependent heterophilic interaction between desmosomal cadherins, desmoglein and desmocollin, contributes to cell-cell adhesion. J Cell Biol. 1997;138(1):193–201.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Aberle H, Bierkamp C, Torchard D, et al. The human plakoglobin gene localizes on chromosome 17q21 and is subjected to loss of heterozygosity in breast and ovarian cancers. Proc Natl Acad Sci U S A. 1995;92(14):6384–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Palka HL, Green KJ. Roles of plakoglobin end domains in desmosome assembly. J Cell Sci. 1997;110(Pt 19):2359–71.

    CAS  PubMed  Google Scholar 

  30. Peifer M, McCrea PD, Green KJ, Wieschaus E, Gumbiner BM. The vertebrate adhesive junction proteins beta-catenin and plakoglobin and the Drosophila segment polarity gene armadillo form a multigene family with similar properties. J Cell Biol. 1992;118(3):681–91.

    CAS  PubMed  Google Scholar 

  31. Choi HJ, Gross JC, Pokutta S, Weis WI. Interactions of plakoglobin and beta-catenin with desmosomal cadherins: basis of selective exclusion of alpha- and beta-catenin from desmosomes. J Biol Chem. 2009;284(46):31776–88.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Kowalczyk AP, Bornslaeger EA, Borgwardt JE, et al. The amino-terminal domain of desmoplakin binds to plakoglobin and clusters desmosomal cadherin-plakoglobin complexes. J Cell Biol. 1997;139(3):773–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Troyanovsky SM, Troyanovsky RB, Eshkind LG, Krutovskikh VA, Leube RE, Franke WW. Identification of the plakoglobin-binding domain in desmoglein and its role in plaque assembly and intermediate filament anchorage. J Cell Biol. 1994;127(1):151–60.

    CAS  PubMed  Google Scholar 

  34. Troyanovsky SM, Troyanovsky RB, Eshkind LG, Leube RE, Franke WW. Identification of amino acid sequence motifs in desmocollin, a desmosomal glycoprotein, that are required for plakoglobin binding and plaque formation. Proc Natl Acad Sci U S A. 1994;91(23):10790–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Bonne S, van Hengel J, van Roy F. Chromosomal mapping of human armadillo genes belonging to the p120(ctn)/plakophilin subfamily. Genomics. 1998;51(3):452–4.

    CAS  PubMed  Google Scholar 

  36. Mertens C, Kuhn C, Franke WW. Plakophilins 2a and 2b: constitutive proteins of dual location in the karyoplasm and the desmosomal plaque. J Cell Biol. 1996;135(4):1009–25.

    CAS  PubMed  Google Scholar 

  37. Schmidt A, Langbein L, Pratzel S, Rode M, Rackwitz HR, Franke WW. Plakophilin 3—a novel cell-type-specific desmosomal plaque protein. Differentiation. 1999;64(5):291–306.

    CAS  PubMed  Google Scholar 

  38. Hatzfeld M, Nachtsheim C. Cloning and characterization of a new armadillo family member, p0071, associated with the junctional plaque: evidence for a subfamily of closely related proteins. J Cell Sci. 1996;109(Pt 11):2767–78.

    CAS  PubMed  Google Scholar 

  39. Jefferson JJ, Ciatto C, Shapiro L, Liem RK. Structural analysis of the plakin domain of bullous pemphigoid antigen1 (BPAG1) suggests that plakins are members of the spectrin superfamily. J Mol Biol. 2007;366(1):244–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Armstrong DK, McKenna KE, Purkis PE, et al. Haploinsufficiency of desmoplakin causes a striate subtype of palmoplantar keratoderma. Hum Mol Genet. 1999;8(1):143–8.

    CAS  PubMed  Google Scholar 

  41. Hatsell S, Cowin P. Deconstructing desmoplakin. Nat Cell Biol. 2001;3(12):E270–2.

    CAS  PubMed  Google Scholar 

  42. Green KJ, Parry DA, Steinert PM, et al. Structure of the human desmoplakins. Implications for function in the desmosomal plaque. J Biol Chem. 1990;265(5):2603–12.

    CAS  PubMed  Google Scholar 

  43. Andra K, Lassmann H, Bittner R, et al. Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Genes Dev. 1997;11(23):3143–56.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Pulkkinen L, Smith FJ, Shimizu H, et al. Homozygous deletion mutations in the plectin gene (PLEC1) in patients with epidermolysis bullosa simplex associated with late-onset muscular dystrophy. Hum Mol Genet. 1996;5(10):1539–46.

    CAS  PubMed  Google Scholar 

  45. Vasioukhin V, Bowers E, Bauer C, Degenstein L, Fuchs E. Desmoplakin is essential in epidermal sheet formation. Nat Cell Biol. 2001;3(12):1076–85.

    CAS  PubMed  Google Scholar 

  46. Joly P, Litrowski N. Pemphigus group (vulgaris, vegetans, foliaceus, herpetiformis, brasiliensis). Clin Dermatol. 2011;29(4):432–6.

    PubMed  Google Scholar 

  47. Diaz LA, Giudice GJ. End of the century overview of skin blisters. Arch Dermatol. 2000;136(1):106–12.

    CAS  PubMed  Google Scholar 

  48. Lever WF. Pemphigus and pemphigoid. Springfield: Charles C. Thomas Publisher; 1965.

    Google Scholar 

  49. Ding X, Aoki V, Mascaro Jr JM, Lopez-Swiderski A, Diaz LA, Fairley JA. Mucosal and mucocutaneous (generalized) pemphigus vulgaris show distinct autoantibody profiles. J Invest Dermatol. 1997;109(4):592–6.

    CAS  PubMed  Google Scholar 

  50. Amagai M, Karpati S, Prussick R, Klaus-Kovtun V, Stanley JR. Autoantibodies against the amino-terminal cadherin-like binding domain of pemphigus vulgaris antigen are pathogenic. J Clin Invest. 1992;90(3):919–26.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Ding X, Diaz LA, Fairley JA, Giudice GJ, Liu Z. The anti-desmoglein 1 autoantibodies in pemphigus vulgaris sera are pathogenic. J Invest Dermatol. 1999;112(5):739–43.

    CAS  PubMed  Google Scholar 

  52. Anhalt GJ, Labib RS, Voorhees JJ, Beals TF, Diaz LA. Induction of pemphigus in neonatal mice by passive transfer of IgG from patients with the disease. N Engl J Med. 1982;306(20):1189–96.

    CAS  PubMed  Google Scholar 

  53. Amagai M, Hashimoto T, Green KJ, Shimizu N, Nishikawa T. Antigen-specific immunoadsorption of pathogenic autoantibodies in pemphigus foliaceus. J Invest Dermatol. 1995;104(6):895–901.

    CAS  PubMed  Google Scholar 

  54. Culton DA, Qian Y, Li N, et al. Advances in pemphigus and its endemic pemphigus foliaceus (Fogo Selvagem) phenotype: a paradigm of human autoimmunity. J Autoimmun. 2008;31(4):311–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Qaqish BF, Prisayanh P, Qian Y, et al. Development of an IgG4-based predictor of endemic pemphigus foliaceus (fogo selvagem). J Invest Dermatol. 2009;129(1):110–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Evangelista F, Dasher DA, Diaz LA, Prisayanh PS, Li N. E-cadherin is an additional immunological target for pemphigus autoantibodies. J Invest Dermatol. 2008;128(7):1710–8.

    CAS  PubMed  Google Scholar 

  57. Anhalt GJ. Paraneoplastic pemphigus. J Investig Dermatol Symp Proc. 2004;9(1):29–33.

    PubMed  Google Scholar 

  58. Anhalt GJ, Kim SC, Stanley JR, et al. Paraneoplastic pemphigus. An autoimmune mucocutaneous disease associated with neoplasia. N Engl J Med. 1990;323(25):1729–35.

    CAS  PubMed  Google Scholar 

  59. Amagai M, Nishikawa T, Nousari HC, Anhalt GJ, Hashimoto T. Antibodies against desmoglein 3 (pemphigus vulgaris antigen) are present in sera from patients with paraneoplastic pemphigus and cause acantholysis in vivo in neonatal mice. J Clin Invest. 1998;102(4):775–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Cozzani E, Di Zenzo G, Calabresi V, et al. Anti-desmoplakin antibodies in erythema multiforme and Stevens-Johnson syndrome sera: pathogenic or epiphenomenon? Eur J Dermatol. 2011;21(1):32–6.

    CAS  PubMed  Google Scholar 

  61. Fukiwake N, Moroi Y, Urabe K, Ishii N, Hashimoto T, Furue M. Detection of autoantibodies to desmoplakin in a patient with oral erythema multiforme. Eur J Dermatol. 2007;17(3):238–41.

    CAS  PubMed  Google Scholar 

  62. Tsuruta D, Ishii N, Hamada T, et al. IgA pemphigus. Clin Dermatol. 2011;29(4):437–42.

    PubMed  Google Scholar 

  63. Hashimoto T, Komai A, Futei Y, Nishikawa T, Amagai M. Detection of IgA autoantibodies to desmogleins by an enzyme-linked immunosorbent assay: the presence of new minor subtypes of IgA pemphigus. Arch Dermatol. 2001;137(6):735–8.

    CAS  PubMed  Google Scholar 

  64. Loiseau P, Lecleach L, Prost C, et al. HLA class II polymorphism contributes to specify desmoglein derived peptides in pemphigus vulgaris and pemphigus foliaceus. J Autoimmun. 2000;15(1):67–73.

    CAS  PubMed  Google Scholar 

  65. Sekiguchi M, Futei Y, Fujii Y, Iwasaki T, Nishikawa T, Amagai M. Dominant autoimmune epitopes recognized by pemphigus antibodies map to the N-terminal adhesive region of desmogleins. J Immunol. 2001;167(9):5439–48.

    CAS  PubMed  Google Scholar 

  66. Li N, Aoki V, Hans-Filho G, Rivitti EA, Diaz LA. The role of intramolecular epitope spreading in the pathogenesis of endemic pemphigus foliaceus (fogo selvagem). J Exp Med. 2003;197(11):1501–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Futei Y, Amagai M, Sekiguchi M, Nishifuji K, Fujii Y, Nishikawa T. Use of domain-swapped molecules for conformational epitope mapping of desmoglein 3 in pemphigus vulgaris. J Invest Dermatol. 2000;115(5):829–34.

    CAS  PubMed  Google Scholar 

  68. Shapiro L, Fannon AM, Kwong PD, et al. Structural basis of cell-cell adhesion by cadherins. Nature. 1995;374(6520):327–37.

    CAS  PubMed  Google Scholar 

  69. Roscoe JT, Diaz L, Sampaio SA, et al. Brazilian pemphigus foliaceus autoantibodies are pathogenic to BALB/c mice by passive transfer. J Invest Dermatol. 1985;85(6):538–41.

    CAS  PubMed  Google Scholar 

  70. Anhalt GJ, Patel HP, Labib RS, Diaz LA, Proud D. Dexamethasone inhibits plasminogen activator activity in experimental pemphigus in vivo but does not block acantholysis. J Immunol. 1986;136(1):113–7.

    CAS  PubMed  Google Scholar 

  71. Anhalt GJ, Till GO, Diaz LA, Labib RS, Patel HP, Eaglstein NF. Defining the role of complement in experimental pemphigus vulgaris in mice. J Immunol. 1986;137(9):2835–40.

    CAS  PubMed  Google Scholar 

  72. Mahoney MG, Wang ZH, Stanley JR. Pemphigus vulgaris and pemphigus foliaceus antibodies are pathogenic in plasminogen activator knockout mice. J Invest Dermatol. 1999;113(1):22–5.

    CAS  PubMed  Google Scholar 

  73. Rock B, Labib RS, Diaz LA. Monovalent Fab’ immunoglobulin fragments from endemic pemphigus foliaceus autoantibodies reproduce the human disease in neonatal Balb/c mice. J Clin Invest. 1990;85(1):296–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Tsunoda K, Ota T, Aoki M, et al. Induction of pemphigus phenotype by a mouse monoclonal antibody against the amino-terminal adhesive interface of desmoglein 3. J Immunol. 2003;170(4):2170–8.

    CAS  PubMed  Google Scholar 

  75. Heupel WM, Zillikens D, Drenckhahn D, Waschke J. Pemphigus vulgaris IgG directly inhibit desmoglein 3-mediated transinteraction. J Immunol. 2008;181(3):1825–34.

    CAS  PubMed  Google Scholar 

  76. Stanley JR, Amagai M. Pemphigus, bullous impetigo, and the staphylococcal scalded-skin syndrome. N Engl J Med. 2006;355(17):1800–10.

    CAS  PubMed  Google Scholar 

  77. Waschke J, Menendez-Castro C, Bruggeman P, et al. Imaging and force spectroscopy on desmoglein 1 using atomic force microscopy reveal multivalent Ca(2+)-dependent, low-affinity trans-interaction. J Membr Biol. 2007;216(2–3):83–92.

    CAS  PubMed  Google Scholar 

  78. Waschke J. The desmosome and pemphigus. Histochem Cell Biol. 2008;130(1):21–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Seishima M, Esaki C, Osada K, Mori S, Hashimoto T, Kitajima Y. Pemphigus IgG, but not bullous pemphigoid IgG, causes a transient increase in intracellular calcium and inositol 1,4,5-triphosphate in DJM-1 cells, a squamous cell carcinoma line. J Invest Dermatol. 1995;104(1):33–7.

    CAS  PubMed  Google Scholar 

  80. Aoyama Y, Kitajima Y. Pemphigus vulgaris-IgG causes a rapid depletion of desmoglein 3 (Dsg3) from the Triton X-100 soluble pools, leading to the formation of Dsg3-depleted desmosomes in a human squamous carcinoma cell line, DJM-1 cells. J Invest Dermatol. 1999;112(1):67–71.

    CAS  PubMed  Google Scholar 

  81. Aoyama Y, Owada MK, Kitajima Y. A pathogenic autoantibody, pemphigus vulgaris-IgG, induces phosphorylation of desmoglein 3, and its dissociation from plakoglobin in cultured keratinocytes. Eur J Immunol. 1999;29(7):2233–40.

    CAS  PubMed  Google Scholar 

  82. Calkins CC, Setzer SV, Jennings JM, et al. Desmoglein endocytosis and desmosome disassembly are coordinated responses to pemphigus autoantibodies. J Biol Chem. 2006;281(11):7623–34.

    CAS  PubMed  Google Scholar 

  83. Kitajima Y, Aoyama Y, Seishima M. Transmembrane signaling for adhesive regulation of desmosomes and hemidesmosomes, and for cell-cell detachment induced by pemphigus IgG in cultured keratinocytes: involvement of protein kinase C. J Investig Dermatol Symp Proc. 1999;4(2):137–44.

    CAS  PubMed  Google Scholar 

  84. Sato M, Aoyama Y, Kitajima Y. Assembly pathway of desmoglein 3 to desmosomes and its perturbation by pemphigus vulgaris-IgG in cultured keratinocytes, as revealed by time-lapsed labeling immunoelectron microscopy. Lab Invest. 2000;80(10):1583–92.

    CAS  PubMed  Google Scholar 

  85. Shu E, Yamamoto Y, Sato-Nagai M, Aoyama Y, Kitajima Y. Pemphigus vulgaris-IgG reduces the desmoglein 3/desmocollin 3 ratio on the cell surface in cultured keratinocytes as revealed by double-staining immunoelectron microscopy. J Dermatol Sci. 2005;40(3):209–11.

    CAS  PubMed  Google Scholar 

  86. Berkowitz P, Chua M, Liu Z, Diaz LA, Rubenstein DS. Autoantibodies in the autoimmune disease pemphigus foliaceus induce blistering via p38 mitogen-activated protein kinase-dependent signaling in the skin. Am J Pathol. 2008;173(6):1628–36.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Berkowitz P, Diaz LA, Hall RP, Rubenstein DS. Induction of p38MAPK and HSP27 phosphorylation in pemphigus patient skin. J Invest Dermatol. 2008;128(3):738–40.

    CAS  PubMed  Google Scholar 

  88. Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta. 2007;1773(8):1358–75.

    CAS  PubMed  Google Scholar 

  89. Schmidt E, Waschke J. Apoptosis in pemphigus. Autoimmun Rev. 2009;8(7):533–7.

    CAS  PubMed  Google Scholar 

  90. Lee HE, Berkowitz P, Jolly PS, Diaz LA, Chua MP, Rubenstein DS. Biphasic activation of p38MAPK suggests that apoptosis is a downstream event in pemphigus acantholysis. J Biol Chem. 2009;284(18):12524–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Nys K, Van Laethem A, Michiels C, et al. A p38(MAPK)/HIF-1 pathway initiated by UVB irradiation is required to induce Noxa and apoptosis of human keratinocytes. J Invest Dermatol. 2010;130(9):2269–76.

    CAS  PubMed  Google Scholar 

  92. Li N, Zhao M, Wang J, Liu Z, Diaz LA. Involvement of the apoptotic mechanism in pemphigus foliaceus autoimmune injury of the skin. J Immunol. 2009;182(1):711–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Gniadecki R, Jemec GB, Thomsen BM, Hansen M. Relationship between keratinocyte adhesion and death: anoikis in acantholytic diseases. Arch Dermatol Res. 1998;290(10):528–32.

    CAS  PubMed  Google Scholar 

  94. Rodrigues DB, Pereira SA, dos Reis MA, et al. In situ detection of inflammatory cytokines and apoptosis in pemphigus foliaceus patients. Arch Pathol Lab Med. 2009;133(1):97–100.

    PubMed  Google Scholar 

  95. Puviani M, Marconi A, Cozzani E, Pincelli C. Fas ligand in pemphigus sera induces keratinocyte apoptosis through the activation of caspase-8. J Invest Dermatol. 2003;120(1):164–7.

    CAS  PubMed  Google Scholar 

  96. Muller E, Caldelari R, De Bruin A, et al. Pathogenesis in pemphigus vulgaris: a central role for the armadillo protein plakoglobin. J Invest Dermatol. 2000;115(2):332.

    PubMed  Google Scholar 

  97. Muller EJ, Williamson L, Kolly C, Suter MM. Outside-in signaling through integrins and cadherins: a central mechanism to control epidermal growth and differentiation? J Invest Dermatol. 2008;128(3):501–16.

    CAS  PubMed  Google Scholar 

  98. Williamson L, Hunziker T, Suter MM, Muller EJ. Nuclear c-Myc: a molecular marker for early stage pemphigus vulgaris. J Invest Dermatol. 2007;127(6):1549–55.

    CAS  PubMed  Google Scholar 

  99. Williamson L, Raess NA, Caldelari R, et al. Pemphigus vulgaris identifies plakoglobin as key suppressor of c-Myc in the skin. EMBO J. 2006;25(14):3298–309.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Futamura S, Martins C, Rivitti EA, Labib RS, Diaz LA, Anhalt GJ. Ultrastructural studies of acantholysis induced in vivo by passive transfer of IgG from endemic pemphigus foliaceus (Fogo Selvagem). J Invest Dermatol. 1989;93(4):480–5.

    CAS  PubMed  Google Scholar 

  101. Takahashi Y, Patel HP, Labib RS, Diaz LA, Anhalt GJ. Experimentally induced pemphigus vulgaris in neonatal BALB/c mice: a time-course study of clinical, immunologic, ultrastructural, and cytochemical changes. J Invest Dermatol. 1985;84(1):41–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna A. Culton MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Evangelista, F., Culton, D.A., Diaz, L.A. (2015). Desmosomal Proteins as Autoantigens in Pemphigus. In: Murrell, D. (eds) Blistering Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45698-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45698-9_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45697-2

  • Online ISBN: 978-3-662-45698-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics