Skip to main content

Keratins and Their Role in EB Simplex

  • Chapter
  • First Online:
Blistering Diseases

Abstract

Keratins are a major constituent of the epidermal cell cytoskeleton. Apart from their contribution to cell ability to resist mechanical stress, they have been shown to regulate additional biological processes of importance such as protein synthesis, cell migration, and apoptosis. Much of this knowledge has been gained through the study of rare disorders, known as keratinopathies, which are caused by mutations in genes encoding the various epidermal keratins. Epidermolysis bullosa simplex (EBS) is a congenital blistering disease resulting from defects in K5–K14 filament network architecture, which render keratinocytes susceptible to mechanical trauma. Nonstructural functions of basal keratins do also significantly contribute to the pathogenesis of EBS. Advances in our understanding of the molecular basis of keratin disorders have in turn recently led to the development of novel therapeutic approaches, raising new hopes for the treatment of this group of inherited skin diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Segre JA. Epidermal barrier formation and recovery in skin disorders. J Clin Invest. 2006;116(5):1150–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Pekny M, Lane EB. Intermediate filaments and stress. Exp Cell Res. 2007;313(10):2244–54.

    CAS  PubMed  Google Scholar 

  3. Godsel LM, Hobbs RP, Green KJ. Intermediate filament assembly: dynamics to disease. Trends Cell Biol. 2008;18(1):28–37.

    CAS  PubMed  Google Scholar 

  4. Omary MB, Coulombe PA, McLean WH. Intermediate filament proteins and their associated diseases. N Engl J Med. 2004;351(20):2087–100.

    CAS  PubMed  Google Scholar 

  5. Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, Magin TM, et al. New consensus nomenclature for mammalian keratins. J Cell Biol. 2006;174(2):169–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Hatzfeld M, Franke WW. Pair formation and promiscuity of cytokeratins: formation in vitro of heterotypic complexes and intermediate-sized filaments by homologous and heterologous recombinations of purified polypeptides. J Cell Biol. 1985;101(5 Pt 1):1826–41.

    CAS  PubMed  Google Scholar 

  7. Lane EB, McLean WH. Keratins and skin disorders. J Pathol. 2004;204(4):355–66.

    CAS  PubMed  Google Scholar 

  8. Kim S, Wong P, Coulombe PA. A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature. 2006;441(7091):362–5.

    CAS  PubMed  Google Scholar 

  9. Tao H, Berno AJ, Cox DR, Frazer KA. In vitro human keratinocyte migration rates are associated with SNPs in the KRT1 interval. PLoS One. 2007;2(1):e697.

    PubMed Central  PubMed  Google Scholar 

  10. Tong X, Coulombe PA. Keratin 17 modulates hair follicle cycling in a TNFalpha-dependent fashion. Genes Dev. 2006;20(10):1353–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Anton-Lamprecht I, Schnyder UW. Epidermolysis bullosa herpetiformis Dowling-Meara. Report of a case and pathomorphogenesis. Dermatologica. 1982;164(4):221–35.

    CAS  PubMed  Google Scholar 

  12. Ishida-Yamamoto A, McGrath JA, Chapman SJ, Leigh IM, Lane EB, Eady RA. Epidermolysis bullosa simplex (Dowling-Meara type) is a genetic disease characterized by an abnormal keratin-filament network involving keratins K5 and K14. J Invest Dermatol. 1991;97(6):959–68.

    CAS  PubMed  Google Scholar 

  13. Bonifas JM, Rothman AL, Epstein Jr EH. Epidermolysis bullosa simplex: evidence in two families for keratin gene abnormalities. Science. 1991;254(5035):1202–5.

    CAS  PubMed  Google Scholar 

  14. Coulombe PA, Hutton ME, Letai A, Hebert A, Paller AS, Fuchs E. Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: genetic and functional analyses. Cell. 1991;66(6):1301–11.

    CAS  PubMed  Google Scholar 

  15. Uitto J, Richard G, McGrath JA. Diseases of epidermal keratins and their linker proteins. Exp Cell Res. 2007;313(10):1995–2009.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Horn HM, Priestley GC, Eady RA, Tidman MJ. The prevalence of epidermolysis bullosa in Scotland. Br J Dermatol. 1997;136(4):560–4.

    CAS  PubMed  Google Scholar 

  17. Fine JD, Bauer EA, Briggaman RA, Carter DM, Eady RA, Esterly NB, et al. Revised clinical and laboratory criteria for subtypes of inherited epidermolysis bullosa. A consensus report by the Subcommittee on Diagnosis and Classification of the National Epidermolysis Bullosa Registry. J Am Acad Dermatol. 1991;24(1):119–35.

    CAS  PubMed  Google Scholar 

  18. McKenna KE, Walsh MY, Bingham EA. Epidermolysis bullosa in Northern Ireland. Br J Dermatol. 1992;127(4):318–21.

    CAS  PubMed  Google Scholar 

  19. Abu Sa’d J, Indelman M, Pfendner E, Falik-Zaccai TC, Mizrachi-Koren M, Shalev S, et al. Molecular epidemiology of hereditary epidermolysis bullosa in a Middle Eastern population. J Invest Dermatol. 2006;126(4):777–81.

    PubMed  Google Scholar 

  20. Intong LR, Murrell DF. Inherited epidermolysis bullosa: new diagnostic criteria and classification. Clin Dermatol. 2012;30(1):70–7.

    PubMed  Google Scholar 

  21. Bolling MC, Lemmink HH, Jansen GH, Jonkman MF. Mutations in KRT5 and KRT14 cause epidermolysis bullosa simplex in 75% of the patients. Br J Dermatol. 2011;164(3):637–44.

    CAS  PubMed  Google Scholar 

  22. Ciubotaru D, Bergman R, Baty D, Indelman M, Pfendner E, Petronius D, et al. Epidermolysis bullosa simplex in Israel: clinical and genetic features. Arch Dermatol. 2003;139(4):498–505.

    CAS  PubMed  Google Scholar 

  23. Padalon-Brauch G, Ben Amitai D, Vodo D, Harel A, Sarig O, Sprecher E, et al. Digenic inheritance in epidermolysis bullosa simplex. J Invest Dermatol. 2012;132(12):2852–4.

    CAS  PubMed  Google Scholar 

  24. Uitto J, Richard G. Progress in epidermolysis bullosa: from eponyms to molecular genetic classification. Clin Dermatol. 2005;23(1):33–40.

    PubMed  Google Scholar 

  25. Uitto J, Richard G. Progress in epidermolysis bullosa: genetic classification and clinical implications. Am J Med Genet C Semin Med Genet. 2004;131C(1):61–74.

    PubMed  Google Scholar 

  26. Liovic M, Stojan J, Bowden PE, Gibbs D, Vahlquist A, Lane EB, et al. A novel keratin 5 mutation (K5V186L) in a family with EBS-K: a conservative substitution can lead to development of different disease phenotypes. J Invest Dermatol. 2001;116(6):964–9.

    CAS  PubMed  Google Scholar 

  27. Sorensen CB, Ladekjaer-Mikkelsen AS, Andresen BS, Brandrup F, Veien NK, Buus SK, et al. Identification of novel and known mutations in the genes for keratin 5 and 14 in Danish patients with epidermolysis bullosa simplex: correlation between genotype and phenotype. J Invest Dermatol. 1999;112(2):184–90.

    CAS  PubMed  Google Scholar 

  28. Murrell DF, Trisnowati N, Miyakis S, Paller AS. The yin and the yang of keratin amino acid substitutions and epidermolysis bullosa simplex. J Invest Dermatol. 2011;131(9):1787–90.

    CAS  PubMed  Google Scholar 

  29. Jonkman MF, Heeres K, Pas HH, van Luyn MJ, Elema JD, Corden LD, et al. Effects of keratin 14 ablation on the clinical and cellular phenotype in a kindred with recessive epidermolysis bullosa simplex. J Invest Dermatol. 1996;107(5):764–9.

    CAS  PubMed  Google Scholar 

  30. Schuilenga-Hut PH, Scheffer H, Pas HH, Nijenhuis M, Buys CH, Jonkman MF. Partial revertant mosaicism of keratin 14 in a patient with recessive epidermolysis bullosa simplex. J Invest Dermatol. 2002;118(4):626–30.

    CAS  PubMed  Google Scholar 

  31. Smith FJ, Morley SM, McLean WH. Novel mechanism of revertant mosaicism in Dowling-Meara epidermolysis bullosa simplex. J Invest Dermatol. 2004;122(1):73–7.

    CAS  PubMed  Google Scholar 

  32. Yasukawa K, Sawamura D, McMillan JR, Nakamura H, Shimizu H. Dominant and recessive compound heterozygous mutations in epidermolysis bullosa simplex demonstrate the role of the stutter region in keratin intermediate filament assembly. J Biol Chem. 2002;277(26):23670–4.

    CAS  PubMed  Google Scholar 

  33. McGowan KM, Tong X, Colucci-Guyon E, Langa F, Babinet C, Coulombe PA. Keratin 17 null mice exhibit age- and strain-dependent alopecia. Genes Dev. 2002;16(11):1412–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Trufant JW, Kreizenbeck GM, Carlson KR, Muthusamy V, Girardi M, Bosenberg MW. A transient epidermolysis bullosa simplex-like phenotype associated with bexarotene treatment in a G138E KRT5 heterozygote. J Cutan Pathol. 2010;37(11):1155–60.

    PubMed  Google Scholar 

  35. Ma L, Yamada S, Wirtz D, Coulombe PA. A ‘hot-spot’ mutation alters the mechanical properties of keratin filament networks. Nat Cell Biol. 2001;3(5):503–6.

    CAS  PubMed  Google Scholar 

  36. Yoneda K, Furukawa T, Zheng YJ, Momoi T, Izawa I, Inagaki M, et al. An autocrine/paracrine loop linking keratin 14 aggregates to tumor necrosis factor alpha-mediated cytotoxicity in a keratinocyte model of epidermolysis bullosa simplex. J Biol Chem. 2004;279(8):7296–303.

    CAS  PubMed  Google Scholar 

  37. Lu H, Chen J, Planko L, Zigrino P, Klein-Hitpass L, Magin TM. Induction of inflammatory cytokines by a keratin mutation and their repression by a small molecule in a mouse model for EBS. J Invest Dermatol. 2007;127(12):2781–9.

    CAS  PubMed  Google Scholar 

  38. Werner NS, Windoffer R, Strnad P, Grund C, Leube RE, Magin TM. Epidermolysis bullosa simplex-type mutations alter the dynamics of the keratin cytoskeleton and reveal a contribution of actin to the transport of keratin subunits. Mol Biol Cell. 2004;15(3):990–1002.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Coulombe PA, Omary MB. ‘Hard’ and ‘soft’ principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol. 2002;14(1):110–22.

    CAS  PubMed  Google Scholar 

  40. D’Alessandro M, Russell D, Morley SM, Davies AM, Lane EB. Keratin mutations of epidermolysis bullosa simplex alter the kinetics of stress response to osmotic shock. J Cell Sci. 2002;115(Pt 22):4341–51.

    PubMed  Google Scholar 

  41. Loffek S, Woll S, Hohfeld J, Leube RE, Has C, Bruckner-Tuderman L, et al. The ubiquitin ligase CHIP/STUB1 targets mutant keratins for degradation. Hum Mutat. 2010;31(4):466–76.

    PubMed  Google Scholar 

  42. Wagner M, Hintner H, Bauer JW, Onder K. Gene expression analysis of an epidermolysis bullosa simplex Dowling-Meara cell line by subtractive hybridization: recapitulation of cellular differentiation, migration and wound healing. Exp Dermatol. 2012;21(2):111–7.

    CAS  PubMed  Google Scholar 

  43. Coulombe PA, Lee CH. Defining keratin protein function in skin epithelia: epidermolysis bullosa simplex and its aftermath. J Invest Dermatol. 2012;132(3 Pt 2):763–75.

    CAS  PubMed  Google Scholar 

  44. Reichelt J, Magin TM. Hyperproliferation, induction of c-Myc and 14–3-3sigma, but no cell fragility in keratin-10-null mice. J Cell Sci. 2002;115(Pt 13):2639–50.

    CAS  PubMed  Google Scholar 

  45. Depianto D, Kerns ML, Dlugosz AA, Coulombe PA. Keratin 17 promotes epithelial proliferation and tumor growth by polarizing the immune response in skin. Nat Genet. 2010;42(10):910–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Quigley DA, To MD, Perez-Losada J, Pelorosso FG, Mao JH, Nagase H, et al. Genetic architecture of mouse skin inflammation and tumour susceptibility. Nature. 2009;458(7237):505–8.

    CAS  PubMed  Google Scholar 

  47. Roth W, Reuter U, Wohlenberg C, Bruckner-Tuderman L, Magin TM. Cytokines as genetic modifiers in K5-/- mice and in human epidermolysis bullosa simplex. Hum Mutat. 2009;30(5):832–41.

    CAS  PubMed  Google Scholar 

  48. Betz RC, Planko L, Eigelshoven S, Hanneken S, Pasternack SM, Bussow H, et al. Loss-of-function mutations in the keratin 5 gene lead to Dowling-Degos disease. Am J Hum Genet. 2006;78(3):510–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Sprecher E, Indelman M, Khamaysi Z, Lugassy J, Petronius D, Bergman R. Galli-Galli disease is an acantholytic variant of Dowling-Degos disease. Br J Dermatol. 2007;156(3):572–4.

    CAS  PubMed  Google Scholar 

  50. Jones EW, Grice K. Reticulate pigmented anomaly of the flexures. Dowling Degos disease, a new genodermatosis. Arch Dermatol. 1978;114(8):1150–7.

    CAS  PubMed  Google Scholar 

  51. Lugassy J, Itin P, Ishida-Yamamoto A, Holland K, Huson S, Geiger D, et al. Naegeli-Franceschetti-Jadassohn syndrome and dermatopathia pigmentosa reticularis: two allelic ectodermal dysplasias caused by dominant mutations in KRT14. Am J Hum Genet. 2006;79(4):724–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Itin PH, Lautenschlager S. Genodermatosis with reticulate, patchy and mottled pigmentation of the neck—a clue to rare dermatologic disorders. Dermatology (Basel, Switzerland). 1998;197(3):281–90.

    CAS  Google Scholar 

  53. Lugassy J, McGrath JA, Itin P, Shemer R, Verbov J, Murphy HR, et al. KRT14 haploinsufficiency results in increased susceptibility of keratinocytes to TNF-alpha-induced apoptosis and causes Naegeli-Franceschetti-Jadassohn syndrome. J Invest Dermatol. 2008;128(6):1517–24.

    CAS  PubMed  Google Scholar 

  54. Uttam J, Hutton E, Coulombe PA, Anton-Lamprecht I, Yu QC, Gedde-Dahl Jr T, et al. The genetic basis of epidermolysis bullosa simplex with mottled pigmentation. Proc Natl Acad Sci U S A. 1996;93(17):9079–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Gu LH, Coulombe PA. Keratin function in skin epithelia: a broadening palette with surprising shades. Curr Opin Cell Biol. 2007;19(1):13–23.

    CAS  PubMed  Google Scholar 

  56. Fontao L, Tasanen K, Huber M, Hohl D, Koster J, Bruckner-Tuderman L, et al. Molecular consequences of deletion of the cytoplasmic domain of bullous pemphigoid 180 in a patient with predominant features of epidermolysis bullosa simplex. J Invest Dermatol. 2004;122(1):65–72.

    CAS  PubMed  Google Scholar 

  57. Jonkman MF, Pas HH, Nijenhuis M, Kloosterhuis G, Steege G. Deletion of a cytoplasmic domain of integrin beta4 causes epidermolysis bullosa simplex. J Invest Dermatol. 2002;119(6):1275–81.

    CAS  PubMed  Google Scholar 

  58. Groves RW, Liu L, Dopping-Hepenstal PJ, Markus HS, Lovell PA, Ozoemena L, et al. A homozygous nonsense mutation within the dystonin gene coding for the coiled-coil domain of the epithelial isoform of BPAG1 underlies a new subtype of autosomal recessive epidermolysis bullosa simplex. J Invest Dermatol. 2010;130(6):1551–7.

    CAS  PubMed  Google Scholar 

  59. Liu L, Dopping-Hepenstal PJ, Lovell PA, Michael M, Horn H, Fong K, et al. Autosomal recessive epidermolysis bullosa simplex due to loss of BPAG1-e expression. J Invest Dermatol. 2012;132(3 Pt 1):742–4.

    CAS  PubMed  Google Scholar 

  60. Sprecher E, Molho-Pessach V, Ingber A, Sagi E, Indelman M, Bergman R. Homozygous splice site mutations in PKP1 result in loss of epidermal plakophilin 1 expression and underlie ectodermal dysplasia/skin fragility syndrome in two consanguineous families. J Invest Dermatol. 2004;122(3):647–51.

    CAS  PubMed  Google Scholar 

  61. Whittock NV, Haftek M, Angoulvant N, Wolf F, Perrot H, Eady RA, et al. Genomic amplification of the human plakophilin 1 gene and detection of a new mutation in ectodermal dysplasia/skin fragility syndrome. J Invest Dermatol. 2000;115(3):368–74.

    CAS  PubMed  Google Scholar 

  62. McGrath JA, McMillan JR, Shemanko CS, Runswick SK, Leigh IM, Lane EB, et al. Mutations in the plakophilin 1 gene result in ectodermal dysplasia/skin fragility syndrome. Nat Genet. 1997;17(2):240–4.

    CAS  PubMed  Google Scholar 

  63. Kowalczyk AP, Hatzfeld M, Bornslaeger EA, Kopp DS, Borgwardt JE, Corcoran CM, et al. The head domain of plakophilin-1 binds to desmoplakin and enhances its recruitment to desmosomes. Implications for cutaneous disease. J Biol Chem. 1999;274(26):18145–8.

    CAS  PubMed  Google Scholar 

  64. McGrath JA, Bolling MC, Jonkman MF. Lethal acantholytic epidermolysis bullosa. Dermatol Clin. 2010;28(1):131–5.

    CAS  PubMed  Google Scholar 

  65. Pigors M, Kiritsi D, Krumpelmann S, Wagner N, He Y, Podda M, et al. Lack of plakoglobin leads to lethal congenital epidermolysis bullosa: a novel clinico-genetic entity. Hum Mol Genet. 2011;20(9):1811–9.

    CAS  PubMed  Google Scholar 

  66. Fine JD, Johnson LB, Weiner M, Suchindran C. Cause-specific risks of childhood death in inherited epidermolysis bullosa. J Pediatr. 2008;152(2):276–80.

    PubMed  Google Scholar 

  67. Lanschuetzer CM, Emberger M, Laimer M, Diem A, Bauer JW, Soyer HP, et al. Epidermolysis bullosa naevi reveal a distinctive dermoscopic pattern. Br J Dermatol. 2005;153(1):97–102.

    CAS  PubMed  Google Scholar 

  68. Bauer JW, Schaeppi H, Kaserer C, Hantich B, Hintner H. Large melanocytic nevi in hereditary epidermolysis bullosa. J Am Acad Dermatol. 2001;44(4):577–84.

    CAS  PubMed  Google Scholar 

  69. Fine JD, Johnson LB, Weiner M, Li KP, Suchindran C. Epidermolysis bullosa and the risk of life-threatening cancers: the National EB Registry experience, 1986–2006. J Am Acad Dermatol. 2009;60(2):203–11.

    PubMed  Google Scholar 

  70. Fewtrell MS, Allgrove J, Gordon I, Brain C, Atherton D, Harper J, et al. Bone mineralization in children with epidermolysis bullosa. Br J Dermatol. 2006;154(5):959–62.

    CAS  PubMed  Google Scholar 

  71. Harel A, Bergman R, Indelman M, Sprecher E. Epidermolysis bullosa simplex with mottled pigmentation resulting from a recurrent mutation in KRT14. J Invest Dermatol. 2006;126(7):1654–7.

    CAS  PubMed  Google Scholar 

  72. Gu LH, Kim SC, Ichiki Y, Park J, Nagai M, Kitajima Y. A usual frameshift and delayed termination codon mutation in keratin 5 causes a novel type of epidermolysis bullosa simplex with migratory circinate erythema. J Invest Dermatol. 2003;121(3):482–5.

    CAS  PubMed  Google Scholar 

  73. Rezniczek GA, Walko G, Wiche G. Plectin gene defects lead to various forms of epidermolysis bullosa simplex. Dermatol Clin. 2010;28(1):33–41.

    CAS  PubMed  Google Scholar 

  74. Bolling MC, Pas HH, de Visser M, Aronica E, Pfendner EG, van den Berg MP, et al. PLEC1 mutations underlie adult-onset dilated cardiomyopathy in epidermolysis bullosa simplex with muscular dystrophy. J Invest Dermatol. 2010;130(4):1178–81.

    CAS  PubMed  Google Scholar 

  75. Jonkman MF, Pasmooij AM, Pasmans SG, van den Berg MP, Ter Horst HJ, Timmer A, et al. Loss of desmoplakin tail causes lethal acantholytic epidermolysis bullosa. Am J Hum Genet. 2005;77(4):653–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Shinkuma S, McMillan JR, Shimizu H. Ultrastructure and molecular pathogenesis of epidermolysis bullosa. Clin Dermatol. 2011;29(4):412–9.

    PubMed  Google Scholar 

  77. Petronius D, Bergman R, Ben Izhak O, Leiba R, Sprecher E. A comparative study of immunohistochemistry and electron microscopy used in the diagnosis of epidermolysis bullosa. Am J Dermatopathol. 2003;25(3):198–203.

    PubMed  Google Scholar 

  78. Bergman R, Harel A, Sprecher E. Dyskeratosis as a histologic feature in epidermolysis bullosa simplex-Dowling Meara. J Am Acad Dermatol. 2007;57(3):463–6.

    PubMed  Google Scholar 

  79. Darwich E, Vicente A, Bolling MC, Gonzalez-Ensenat MA, Cusi V, Fortuny C, et al. Extensive acantholysis as the major histological feature of a severe case of Dowling Meara-epidermolysis bullosa simplex: a reappraisal of acantholysis in the newborn. Eur J Dermatol. 2011;21(6):966–71.

    PubMed  Google Scholar 

  80. Szeverenyi I, Cassidy AJ, Chung CW, Lee BT, Common JE, Ogg SC, et al. The human intermediate filament database: comprehensive information on a gene family involved in many human diseases. Hum Mutat. 2008;29(3):351–60.

    CAS  PubMed  Google Scholar 

  81. McLean WH, Smith FJ, Cassidy AJ. Insights into genotype-phenotype correlation in pachyonychia congenita from the human intermediate filament mutation database. J Investig Dermatol Symp Proc. 2005;10(1):31–6.

    CAS  PubMed  Google Scholar 

  82. Han S, Cooper DN, Bowden PE. Utilization of a cryptic noncanonical donor splice site in the KRT14 gene causes a mild form of epidermolysis bullosa simplex. Br J Dermatol. 2006;155(1):201–3.

    CAS  PubMed  Google Scholar 

  83. Rugg EL, Rachet-Prehu MO, Rochat A, Barrandon Y, Goossens M, Lane EB, et al. Donor splice site mutation in keratin 5 causes in-frame removal of 22 amino acids of H1 and 1A rod domains in Dowling-Meara epidermolysis bullosa simplex. Eur J Hum Genet. 1999;7(3):293–300.

    CAS  PubMed  Google Scholar 

  84. Kiritsi D, Cosgarea I, Franzke CW, Schumann H, Oji V, Kohlhase J, et al. Acral peeling skin syndrome with TGM5 gene mutations may resemble epidermolysis bullosa simplex in young individuals. J Invest Dermatol. 2010;130(6):1741–6.

    CAS  PubMed  Google Scholar 

  85. Alikhan A, Farshidi D, Shwayder T. Case of mistaken identity: bullous congenital ichthyosiform erythroderma mistaken as epidermolysis bullosa simplex. Dermatol Online J. 2009;15(9):3.

    Google Scholar 

  86. Pfendner EG, Sadowski SG, Uitto J. Epidermolysis bullosa simplex: recurrent and de novo mutations in the KRT5 and KRT14 genes, phenotype/genotype correlations, and implications for genetic counseling and prenatal diagnosis. J Invest Dermatol. 2005;125(2):239–43.

    CAS  PubMed  Google Scholar 

  87. Nagao-Watanabe M, Fukao T, Matsui E, Kaneko H, Inoue R, Kawamoto N, et al. Identification of somatic and germline mosaicism for a keratin 5 mutation in epidermolysis bullosa simplex in a family of which the proband was previously regarded as a sporadic case. Clin Genet. 2004;66(3):236–8.

    CAS  PubMed  Google Scholar 

  88. Denyer JE. Wound management for children with epidermolysis bullosa. Dermatol Clin. 2010;28(2):257–64, viii–ix.

    CAS  PubMed  Google Scholar 

  89. Swartling C, Karlqvist M, Hymnelius K, Weis J, Vahlquist A. Botulinum toxin in the treatment of sweat-worsened foot problems in patients with epidermolysis bullosa simplex and pachyonychia congenita. Br J Dermatol. 2010;163(5):1072–6.

    CAS  PubMed  Google Scholar 

  90. Abitbol RJ, Zhou LH. Treatment of epidermolysis bullosa simplex, Weber-Cockayne type, with botulinum toxin type A. Arch Dermatol. 2009;145(1):13–5.

    PubMed  Google Scholar 

  91. Schober-Flores C. Epidermolysis bullosa: the challenges of wound care. Dermatol Nurs. 2003;15(2):135–8, 41–4.

    PubMed  Google Scholar 

  92. Mather C, Denyer J. Removing dressings in epidermolysis bullosa. Nurs Times. 2008;104(14):46–8.

    PubMed  Google Scholar 

  93. Fivenson DP, Scherschun L, Choucair M, Kukuruga D, Young J, Shwayder T. Graftskin therapy in epidermolysis bullosa. J Am Acad Dermatol. 2003;48(6):886–92.

    PubMed  Google Scholar 

  94. Shin KC, Park BY, Kim HK, Kim WS, Bae TH. The use of cultured allogenic keratinocyte grafting in a patient with epidermolysis bullosa simplex. Ann Dermatol. 2011;23 Suppl 3:S393–7.

    PubMed Central  PubMed  Google Scholar 

  95. Langan SM, Williams HC. A systematic review of randomized controlled trials of treatments for inherited forms of epidermolysis bullosa. Clin Exp Dermatol. 2009;34(1):20–5.

    CAS  PubMed  Google Scholar 

  96. Weiner M, Stein A, Cash S, de Leoz J, Fine JD. Tetracycline and epidermolysis bullosa simplex: a double-blind, placebo-controlled, crossover randomized clinical trial. Br J Dermatol. 2004;150(3):613–4.

    CAS  PubMed  Google Scholar 

  97. Veien NK, Buus SK. Treatment of epidermolysis bullosa simplex (EBS) with tetracycline. Arch Dermatol. 2000;136(3):424–5.

    CAS  PubMed  Google Scholar 

  98. Retief CR, Malkinson FD, Pearson RW. Two familial cases of epidermolysis bullosa simplex successfully treated with tetracycline. Arch Dermatol. 1999;135(8):997–8.

    CAS  PubMed  Google Scholar 

  99. Fine JD, Eady RA. Tetracycline and epidermolysis bullosa simplex: a new indication for one of the oldest and most widely used drugs in dermatology? Arch Dermatol. 1999;135(8):981–2.

    CAS  PubMed  Google Scholar 

  100. Kerns ML, DePianto D, Dinkova-Kostova AT, Talalay P, Coulombe PA. Reprogramming of keratin biosynthesis by sulforaphane restores skin integrity in epidermolysis bullosa simplex. Proc Natl Acad Sci U S A. 2007;104(36):14460–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Lewin AS, Glazer PM, Milstone LM. Gene therapy for autosomal dominant disorders of keratin. J Investig Dermatol Symp Proc. 2005;10(1):47–61.

    CAS  PubMed  Google Scholar 

  102. McLean WH, Moore CB. Keratin disorders: from gene to therapy. Hum Mol Genet. 2011;20(R2):R189–97.

    CAS  PubMed  Google Scholar 

  103. Cao T, Longley MA, Wang XJ, Roop DR. An inducible mouse model for epidermolysis bullosa simplex: implications for gene therapy. J Cell Biol. 2001;152(3):651–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Petek LM, Fleckman P, Miller DG. Efficient KRT14 targeting and functional characterization of transplanted human keratinocytes for the treatment of epidermolysis bullosa simplex. Mol Ther. 2010;18(9):1624–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Wally V, Klausegger A, Koller U, Lochmuller H, Krause S, Wiche G, et al. 5′ trans-splicing repair of the PLEC1 gene. J Invest Dermatol. 2008;128(3):568–74.

    CAS  PubMed  Google Scholar 

  106. Wally V, Brunner M, Lettner T, Wagner M, Koller U, Trost A, et al. K14 mRNA reprogramming for dominant epidermolysis bullosa simplex. Hum Mol Genet. 2010;19(23):4715–25.

    CAS  PubMed  Google Scholar 

  107. Atkinson SD, McGilligan VE, Liao H, Szeverenyi I, Smith FJ, Moore CB, et al. Development of allele-specific therapeutic siRNA for keratin 5 mutations in epidermolysis bullosa simplex. J Invest Dermatol. 2011;131(10):2079–86.

    CAS  PubMed  Google Scholar 

  108. Leachman SA, Hickerson RP, Hull PR, Smith FJ, Milstone LM, Lane EB, et al. Therapeutic siRNAs for dominant genetic skin disorders including pachyonychia congenita. J Dermatol Sci. 2008;51(3):151–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Smith FJ, Hickerson RP, Sayers JM, Reeves RE, Contag CH, Leake D, et al. Development of therapeutic siRNAs for pachyonychia congenita. J Invest Dermatol. 2008;128(1):50–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli Sprecher MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miodovnik, M., Sprecher, E. (2015). Keratins and Their Role in EB Simplex. In: Murrell, D. (eds) Blistering Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45698-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45698-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45697-2

  • Online ISBN: 978-3-662-45698-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics