Skip to main content

Genetic and Environmental Risk Factors of Autoimmune Bullous Diseases

  • Chapter
  • First Online:
Blistering Diseases

Abstract

Autoimmune bullous diseases comprise a heterogeneous group of disorders, which not only differ with regard to their immunological characteristics but also with regard to genetic and environmental predisposing factors. A strong association with HLA alleles was found in pemphigus, mucous membrane pemphigoid, pemphigoid gestationis and epidermolysis bullosa acquisita, whereas in bullous pemphigoid, this association appeared much less prominent. Recently, the first non-HLA genes have been associated with pemphigus vulgaris. In pemphigus vulgaris and foliaceus, the potential impact drugs, smoking and vaccination have been described, while in the endemic forms of pemphigus foliaceus, the role of environmental factors, including infectious agents, is emerging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruocco V, Pisani M. Induced pemphigus. Arch Dermatol Res. 1982;274(1–2):123–40.

    CAS  PubMed  Google Scholar 

  2. Wolf R, Tamir A, Brenner S. Drug-induced versus drug-triggered pemphigus. Dermatologica. 1991;182(4):207–10.

    CAS  PubMed  Google Scholar 

  3. Brenner S, Bialy-Golan A, Ruocco V. Drug-induced pemphigus. Clin Dermatol. 1998;16(3):393–7.

    CAS  PubMed  Google Scholar 

  4. Sebaratnam DF, Martin LK, Rubin AI, et al. Reversible relapse of pemphigus foliaceus triggered by topical imiquimod suggests that Toll-like receptor 7 inhibitors may be useful treatments for pemphigus. Clin Exp Dermatol. 2010;36(1):91–3.

    PubMed  Google Scholar 

  5. Brenner S, Tur E, Shapiro J, et al. Pemphigus vulgaris: environmental factors. Occupational, behavioral, medical, and qualitative food frequency questionnaire. Int J Dermatol. 2001;40(9):562–9.

    CAS  PubMed  Google Scholar 

  6. Valikhani M, Kavusi S, Chams-Davatchi C, et al. Pemphigus and associated environmental factors: a case-control study. Clin Exp Dermatol. 2007;32(3):256–60.

    CAS  PubMed  Google Scholar 

  7. Mehta JN, Martin AG. A case of pemphigus vulgaris improved by cigarette smoking. Arch Dermatol. 2000;136(1):15–7.

    CAS  PubMed  Google Scholar 

  8. Valikhani M, Kavusi S, Chams-Davatchi C, et al. Impact of smoking on pemphigus. Int J Dermatol. 2008;47(6):567–70.

    PubMed  Google Scholar 

  9. Sullivan TP, Elgart GW, Kirsner RS. Pemphigus and smoking. Int J Dermatol. 2002;41(8):528–30.

    PubMed  Google Scholar 

  10. Grando SA, Dahl MV. Nicotine and pemphigus. Arch Dermatol. 2000;136(10):1269.

    CAS  PubMed  Google Scholar 

  11. Arnson Y, Shoenfeld Y, Amital H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. J Autoimmun. 2010;34(3):J258–65.

    CAS  PubMed  Google Scholar 

  12. Morell-Dubois S, Carpentier O, Cottencin O, et al. Stressful life events and pemphigus. Dermatology. 2008;216(2):104–8.

    CAS  PubMed  Google Scholar 

  13. Bastuji-Garin S, Turki H, Mokhtar I, et al. Possible relation of Tunisian pemphigus with traditional cosmetics: a multicenter case-control study. Am J Epidemiol. 2002;155(3):249–56.

    PubMed  Google Scholar 

  14. Micali G, Nasca MR, Musumeci ML, Innocenzi D. Postsurgical pemphigus. Dermatology. 1998;197(2):192–3.

    CAS  PubMed  Google Scholar 

  15. Tur E, Brenner S. Contributing exogenous factors in pemphigus. Int J Dermatol. 1997;36(12):888–93.

    CAS  PubMed  Google Scholar 

  16. Sinha AA. The genetics of pemphigus. Dermatol Clin. 2011;29(3):381–91, vii.

    CAS  PubMed  Google Scholar 

  17. Tron F, Gilbert D, Joly P, et al. Immunogenetics of pemphigus: an update. Autoimmunity. 2006;39(7):531–9.

    CAS  PubMed  Google Scholar 

  18. Sinha AA, Brautbar C, Szafer F, et al. A newly characterized HLA DQ beta allele associated with pemphigus vulgaris. Science. 1988;239(4843):1026–9.

    CAS  PubMed  Google Scholar 

  19. Sinha AA, Lopez MT, McDevitt HO. Autoimmune diseases: the failure of self tolerance. Science. 1990;248(4961):1380–8.

    CAS  PubMed  Google Scholar 

  20. Todd JA, Acha-Orbea H, Bell JI, et al. A molecular basis for MHC class II—associated autoimmunity. Science. 1988;240(4855):1003–9.

    CAS  PubMed  Google Scholar 

  21. Scharf SJ, Friedmann A, Brautbar C, et al. HLA class II allelic variation and susceptibility to pemphigus vulgaris. Proc Natl Acad Sci U S A. 1988;85(10):3504–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Lee E, Lendas KA, Chow S, et al. Disease relevant HLA class II alleles isolated by genotypic, haplotypic, and sequence analysis in North American Caucasians with pemphigus vulgaris. Hum Immunol. 2006;67(1–2):125–39.

    CAS  PubMed  Google Scholar 

  23. Yan L, Wang JM, Zeng K. Association between HLA-DRB1 polymorphism and pemphigus vulgaris: a meta-analysis. Br J Dermatol. 2012;167:768–77.

    Google Scholar 

  24. Bhanusali D, Sachdev A, Rahmanian A, et al. HLA-E*0103X is associated with susceptibility to pemphigus vulgaris. Exp Dermatol. 2013;22(2):108–12.

    CAS  PubMed  Google Scholar 

  25. Sarig O, Bercovici S, Zoller L, et al. Population-specific association between a polymorphic variant in ST18, encoding a pro-apoptotic molecule, and pemphigus vulgaris. J Invest Dermatol. 2012;132(7):1798–805.

    CAS  PubMed  Google Scholar 

  26. Yang J, Siqueira MF, Behl Y, Alikhani M, Graves DT. The transcription factor ST18 regulates proapoptotic and proinflammatory gene expression in fibroblasts. FASEB J. 2008;22(11):3956–67.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Torzecka JD, Narbutt J, Sysa-Jedrzejowska A, et al. Tumour necrosis factor-alpha polymorphism as one of the complex inherited factors in pemphigus. Mediators Inflamm. 2003;12(5):303–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Diaz LA, Sampaio SA, Rivitti EA, et al. Endemic pemphigus foliaceus (fogo selvagem): II. Current and historic epidemiologic studies. J Invest Dermatol. 1989;92(1):4–12.

    CAS  PubMed  Google Scholar 

  29. Empinotti JC, Aoki V, Filgueira A, et al. Clinical and serological follow-up studies of endemic pemphigus foliaceus (fogo selvagem) in Western Parana, Brazil (2001–2002). Br J Dermatol. 2006;155(2):446–50.

    CAS  PubMed  Google Scholar 

  30. Culton DA, Qian Y, Li N, et al. Advances in pemphigus and its endemic pemphigus foliaceus (Fogo Selvagem) phenotype: a paradigm of human autoimmunity. J Autoimmun. 2008;31(4):311–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Diaz LA, Arteaga LA, Hilario-Vargas J, et al. Anti-desmoglein-1 antibodies in onchocerciasis, leishmaniasis and Chagas disease suggest a possible etiological link to Fogo selvagem. J Invest Dermatol. 2004;123(6):1045–51.

    CAS  PubMed  Google Scholar 

  32. Warren SJ, Lin MS, Giudice GJ, et al. The prevalence of antibodies against desmoglein 1 in endemic pemphigus foliaceus in Brazil. Cooperative Group on Fogo Selvagem Research. N Engl J Med. 2000;343(1):23–30.

    CAS  PubMed  Google Scholar 

  33. Qian SX, Li JY, Hong M, Xu W, Qiu HX. Nonhematological autoimmunity (glomerulosclerosis, paraneoplastic pemphigus and paraneoplastic neurological syndrome) in a patient with chronic lymphocytic leukemia: diagnosis, prognosis and management. Leuk Res. 2008;33:500–5.

    Google Scholar 

  34. Qaqish BF, Prisayanh P, Qian Y, et al. Development of an IgG4-based predictor of endemic pemphigus foliaceus (fogo selvagem). J Invest Dermatol. 2009;129(1):110–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Li N, Aoki V, Hans-Filho G, Rivitti EA, Diaz LA. The role of intramolecular epitope spreading in the pathogenesis of endemic pemphigus foliaceus (fogo selvagem). J Exp Med. 2003;197(11):1501–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Moraes ME, Fernandez-Vina M, Lazaro A, et al. An epitope in the third hypervariable region of the DRB1 gene is involved in the susceptibility to endemic pemphigus foliaceus (fogo selvagem) in three different Brazilian populations. Tissue Antigens. 1997;49(1):35–40.

    CAS  PubMed  Google Scholar 

  37. Bastuji-Garin S, Souissi R, Blum L, et al. Comparative epidemiology of pemphigus in Tunisia and France: unusual incidence of pemphigus foliaceus in young Tunisian women. J Invest Dermatol. 1995;104(2):302–5.

    CAS  PubMed  Google Scholar 

  38. Abida O, Masmoudi A, Rebai A, et al. The familial feature of Tunisian endemic pemphigus foliaceus. Br J Dermatol. 2009;161(4):951–3.

    CAS  PubMed  Google Scholar 

  39. Abida O, Zitouni M, Kallel-Sellami M, et al. Tunisian endemic pemphigus foliaceus is associated with the HLA-DR3 gene: anti-desmoglein 1 antibody-positive healthy subjects bear protective alleles. Br J Dermatol. 2009;161(3):522–7.

    CAS  PubMed  Google Scholar 

  40. Joly P, Mokhtar I, Gilbert D, et al. Immunoblot and immunoelectron microscopic analysis of endemic Tunisian pemphigus. Br J Dermatol. 1999;140(1):44–9.

    CAS  PubMed  Google Scholar 

  41. Kallel Sellami M, Zitouni M, Tombari W, et al. Anti-desmoglein-1 antibodies are prevalent in Tunisian patients with hydatidosis and leishmaniasis. Br J Dermatol. 2007;156(3):591–3.

    CAS  PubMed  Google Scholar 

  42. Zaraa I, Boussoffara T, Ben Ahmed M, et al. Exposure to Phlebotomus papatasi and/or Leishmania major: possible etiologic link to Tunisian pemphigus. J Invest Dermatol. 2014;132(2):479–82.

    Google Scholar 

  43. Martel P, Loiseau P, Joly P, et al. Paraneoplastic pemphigus is associated with the DRB1*03 allele. J Autoimmun. 2003;20(1):91–5.

    CAS  PubMed  Google Scholar 

  44. Liu Q, Bu DF, Li D, Zhu XJ. Genotyping of HLA-I and HLA-II alleles in Chinese patients with paraneoplastic pemphigus. Br J Dermatol. 2008;158(3):587–91.

    CAS  PubMed  Google Scholar 

  45. Macfarlane AW, Verbov JL. Trauma-induced bullous pemphigoid. Clin Exp Dermatol. 1989;14(3):245–9.

    CAS  PubMed  Google Scholar 

  46. Venning VA, Wojnarowska F. Induced bullous pemphigoid. Br J Dermatol. 1995;132(5):831–2.

    CAS  PubMed  Google Scholar 

  47. Vassileva S, Mateev G, Balabanova M, Tsankov N. Burn-induced bullous pemphigoid. J Am Acad Dermatol. 1994;30(6):1027–8.

    CAS  PubMed  Google Scholar 

  48. Emery EW, Hare PJ, Abadir R. Pemphigoid, bronchial neoplasm and radiotherapy. Proc R Soc Med. 1967;60(12):1271–2.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Mul VE, van Geest AJ, Pijls-Johannesma MC, et al. Radiation-induced bullous pemphigoid: a systematic review of an unusual radiation side effect. Radiother Oncol. 2007;82(1):5–9.

    PubMed  Google Scholar 

  50. Lee CW, Ro YS. Sun-induced localized bullous pemphigoid. Br J Dermatol. 1992;126(1):91–2.

    CAS  PubMed  Google Scholar 

  51. Sacher C, Konig C, Scharffetter-Kochanek K, Krieg T, Hunzelmann N. Bullous pemphigoid in a patient treated with UVA-1 phototherapy for disseminated morphea. Dermatology. 2001;202(1):54–7.

    CAS  PubMed  Google Scholar 

  52. Perl S, Rappersberger K, Fodinger D, Anegg B, Honigsmann H, Ortel B. Bullous pemphigoid induced by PUVA therapy. Dermatology. 1996;193(3):245–7.

    CAS  PubMed  Google Scholar 

  53. Rakvit P, Kerr AC, Ibbotson SH. Localized bullous pemphigoid induced by photodynamic therapy. Photodermatol Photoimmunol Photomed. 2011;27(5):251–3.

    PubMed  Google Scholar 

  54. Walmsley N, Hampton P. Bullous pemphigoid triggered by swine flu vaccination: case report and review of vaccine triggered pemphigoid. J Dermatol Case Rep. 2011;5(4):74–6.

    PubMed Central  PubMed  Google Scholar 

  55. Garcia-Doval I, Mayo E, Nogueira Farina J, Cruces MJ. Bullous pemphigoid triggered by influenza vaccination? Ecological study in Galicia, Spain. Br J Dermatol. 2006;155(4):820–3.

    CAS  PubMed  Google Scholar 

  56. Lee JJ, Downham 2nd TF. Furosemide-induced bullous pemphigoid: case report and review of literature. J Drugs Dermatol. 2006;5(6):562–4.

    PubMed  Google Scholar 

  57. Bastuji-Garin S, Joly P, Lemordant P, et al. Risk Factors for bullous pemphigoid in the elderly: a prospective case-control study. J Invest Dermatol. 2010;131(3):637–43.

    PubMed  Google Scholar 

  58. Bastuji-Garin S, Joly P, Picard-Dahan C, et al. Drugs associated with bullous pemphigoid. A case-control study. Arch Dermatol. 1996;132(3):272–6.

    CAS  PubMed  Google Scholar 

  59. Delgado JC, Turbay D, Yunis EJ, et al. A common major histocompatibility complex class II allele HLA-DQB1* 0301 is present in clinical variants of pemphigoid. Proc Natl Acad Sci U S A. 1996;93(16):8569–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Budinger L, Borradori L, Yee C, et al. Identification and characterization of autoreactive T cell responses to bullous pemphigoid antigen 2 in patients and healthy controls. J Clin Invest. 1998;102(12):2082–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Banfield CC, Wojnarowska F, Allen J, George S, Venning VA, Welsh KI. The association of HLA-DQ7 with bullous pemphigoid is restricted to men. Br J Dermatol. 1998;138(6):1085–90.

    CAS  PubMed  Google Scholar 

  62. Gao XH, Winsey S, Li G, et al. HLA-DR and DQ polymorphisms in bullous pemphigoid from northern China. Clin Exp Dermatol. 2002;27(4):319–21.

    PubMed  Google Scholar 

  63. Okazaki A, Miyagawa S, Yamashina Y, Kitamura W, Shirai T. Polymorphisms of HLA-DR and -DQ genes in Japanese patients with bullous pemphigoid. J Dermatol. 2000;27(3):149–56.

    CAS  PubMed  Google Scholar 

  64. Nayar M, Wojnarowska F, Venning V, Taylor CJ. Association of autoimmunity and cicatricial pemphigoid: is there an immunogenetic basis? J Am Acad Dermatol. 1991;25(6 Pt 1):1011–5.

    CAS  PubMed  Google Scholar 

  65. Yunis JJ, Mobini N, Yunis EJ, et al. Common major histocompatibility complex class II markers in clinical variants of cicatricial pemphigoid. Proc Natl Acad Sci U S A. 1994;91(16):7747–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Drouet M, Delpuget-Bertin N, Vaillant L, et al. HLA-DRB1 and HLA-DQB1 genes in susceptibility and resistance to cicatricial pemphigoid in French Caucasians. Eur J Dermatol. 1998;8(5):330–3.

    CAS  PubMed  Google Scholar 

  67. Setterfield J, Theron J, Vaughan RW, et al. Mucous membrane pemphigoid: HLA-DQB1*0301 is associated with all clinical sites of involvement and may be linked to antibasement membrane IgG production. Br J Dermatol. 2001;145(3):406–14.

    CAS  PubMed  Google Scholar 

  68. Carrozzo M, Fasano ME, Broccoletti R, et al. HLA-DQB1 alleles in Italian patients with mucous membrane pemphigoid predominantly affecting the oral cavity. Br J Dermatol. 2001;145(5):805–8.

    CAS  PubMed  Google Scholar 

  69. Chan LS, Hammerberg C, Cooper KD. Significantly increased occurrence of HLA-DQB1*0301 allele in patients with ocular cicatricial pemphigoid. J Invest Dermatol. 1997;108(2):129–32.

    CAS  PubMed  Google Scholar 

  70. Haider N, Neuman R, Foster CS, Ahmed AR. Report on the sequence of DQB1*0301 gene in ocular cicatricial pemphigoid patients. Curr Eye Res. 1992;11(12):1233–8.

    CAS  PubMed  Google Scholar 

  71. Ahmed AR, Foster S, Zaltas M, et al. Association of DQw7 (DQB1*0301) with ocular cicatricial pemphigoid. Proc Natl Acad Sci U S A. 1991;88(24):11579–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Mondino BJ, Brown SI, Rabin BS. HLA antigens in ocular cicatricial pemphigoid. Br J Ophthalmol. 1978;62(4):265–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Shornick JK, Stastny P, Gilliam JN. High frequency of histocompatibility antigens HLA-DR3 and DR4 in herpes gestations. J Clin Invest. 1981;68(2):553–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Shornick JK, Jenkins RE, Artlett CM, et al. Class II MHC typing in pemphigoid gestationis. Clin Exp Dermatol. 1995;20(2):123–6.

    CAS  PubMed  Google Scholar 

  75. Garcia-Gonzalez E, Castro-Llamas J, Karchmer S, et al. Class II major histocompatibility complex typing across the ethnic barrier in pemphigoid gestationis. A study in Mexicans. Int J Dermatol. 1999;38(1):46–51.

    CAS  PubMed  Google Scholar 

  76. Nanda A, Al-Saeed K, Dvorak R, et al. Clinicopathological features and HLA tissue typing in pemphigoid gestationis patients in Kuwait. Clin Exp Dermatol. 2003;28(3):301–6.

    CAS  PubMed  Google Scholar 

  77. Shornick JK, Artlett CM, Jenkins RE, et al. Complement polymorphism in herpes gestationis: association with C4 null allele. J Am Acad Dermatol. 1993;29(4):545–9.

    CAS  PubMed  Google Scholar 

  78. Holmes RC, Black MM, Dann J, James DC, Bhogal B. A comparative study of toxic erythema of pregnancy and herpes gestationis. Br J Dermatol. 1982;106(5):499–510.

    CAS  PubMed  Google Scholar 

  79. Shornick JK, Stastny P, Gilliam JN. Paternal histocompatibility (HLA) antigens and maternal anti-HLA antibodies in herpes gestationis. J Invest Dermatol. 1983;81(5):407–9.

    CAS  PubMed  Google Scholar 

  80. Shornick JK, Jenkins RE, Briggs DC, et al. Anti-HLA antibodies in pemphigoid gestationis (herpes gestationis). Br J Dermatol. 1993;129(3):257–9.

    CAS  PubMed  Google Scholar 

  81. Borthwick GM, Sunderland CA, Holmes RC, Black MM, Stirrat GM. Abnormal expression of HLA-DR antigen in the placenta of a patient with pemphigoid gestationis. J Reprod Immunol. 1984;6(6):393–6.

    CAS  PubMed  Google Scholar 

  82. Lin MS, Gharia MA, Swartz SJ, Diaz LA, Giudice GJ. Identification and characterization of epitopes recognized by T lymphocytes and autoantibodies from patients with herpes gestationis. J Immunol. 1999;162(8):4991–7.

    CAS  PubMed  Google Scholar 

  83. Wojnarowska F, Marsden RA, Bhogal B, Black MM. Chronic bullous disease of childhood, childhood cicatricial pemphigoid, and linear IgA disease of adults. A comparative study demonstrating clinical and immunopathologic overlap. J Am Acad Dermatol. 1988;19(5 Pt 1):792–805.

    CAS  PubMed  Google Scholar 

  84. Godfrey K, Wojnarowska F, Leonard J. Linear IgA disease of adults: association with lymphoproliferative malignancy and possible role of other triggering factors. Br J Dermatol. 1990;123(4):447–52.

    CAS  PubMed  Google Scholar 

  85. Shimanovich I, Rose C, Sitaru C, Brocker EB, Zillikens D. Localized linear IgA disease induced by ampicillin/sulbactam. J Am Acad Dermatol. 2004;51(1):95–8.

    PubMed  Google Scholar 

  86. Nousari HC, Kimyai-Asadi A, Caeiro JP, Anhalt GJ. Clinical, demographic, and immunohistologic features of vancomycin-induced linear IgA bullous disease of the skin. Report of 2 cases and review of the literature. Medicine (Baltimore). 1999;78(1):1–8.

    CAS  Google Scholar 

  87. Billet SE, Kortuem KR, Gibson LE, El-Azhary R. A morbilliform variant of vancomycin-induced linear IgA bullous dermatosis. Arch Dermatol. 2008;144(6):774–8.

    PubMed  Google Scholar 

  88. Onodera H, Mihm Jr MC, Yoshida A, Akasaka T. Drug-induced linear IgA bullous dermatosis. J Dermatol. 2005;32(9):759–64.

    PubMed  Google Scholar 

  89. Collier PM, Wojnarowska F. Drug-induced linear immunoglobulin A disease. Clin Dermatol. 1993;11(4):529–33.

    CAS  PubMed  Google Scholar 

  90. Girao L, Fiadeiro T, Rodrigues JC. Burn-induced linear IgA dermatosis. J Eur Acad Dermatol Venereol. 2000;14(6):507–10.

    CAS  PubMed  Google Scholar 

  91. Alberta-Wszolek L, Mousette AM, Mahalingam M, Levin NA. Linear IgA bullous dermatosis following influenza vaccination. Dermatol Online J. 2009;15(11):3.

    PubMed  Google Scholar 

  92. Salmhofer W, Soyer HP, Wolf P, Fodinger D, Hodl S, Kerl H. UV light-induced linear IgA dermatosis. J Am Acad Dermatol. 2004;50(1):109–15.

    PubMed  Google Scholar 

  93. Collier PM, Wojnarowska F, Welsh K, McGuire W, Black MM. Adult linear IgA disease and chronic bullous disease of childhood: the association with human lymphocyte antigens Cw7, B8, DR3 and tumour necrosis factor influences disease expression. Br J Dermatol. 1999;141(5):867–75.

    CAS  PubMed  Google Scholar 

  94. Gammon WR, Heise ER, Burke WA, Fine JD, Woodley DT, Briggaman RA. Increased frequency of HLA-DR2 in patients with autoantibodies to epidermolysis bullosa acquisita antigen: evidence that the expression of autoimmunity to type VII collagen is HLA class II allele associated. J Invest Dermatol. 1988;91(3):228–32.

    CAS  PubMed  Google Scholar 

  95. Zumelzu C, Le Roux-Villet C, Loiseau P, et al. Black patients of African descent and HLA-DRB1*15:03 frequency overrepresented in epidermolysis bullosa acquisita. J Invest Dermatol. 2011;131(12):2386–93.

    CAS  PubMed  Google Scholar 

  96. Lee CW, Kim SC, Han H. Distribution of HLA class II alleles in Korean patients with epidermolysis bullosa acquisita. Dermatology. 1996;193(4):328–9.

    CAS  PubMed  Google Scholar 

  97. Ludwig RJ, Muller S, Marques A, et al. Identification of quantitative trait loci in experimental epidermolysis bullosa acquisita. J Invest Dermatol. 2012;132(5):1409–15.

    CAS  PubMed  Google Scholar 

  98. Ludwig RJ, Recke A, Bieber K, et al. Generation of antibodies of distinct subclasses and specificity is linked to H2s in an active mouse model of epidermolysis bullosa acquisita. J Invest Dermatol. 2011;131(1):167–76.

    CAS  PubMed  Google Scholar 

  99. Delbaldo C, Chen M, Friedli A, et al. Drug-induced epidermolysis bullosa acquisita with antibodies to type VII collagen. J Am Acad Dermatol. 2002;46(5 Suppl):S161–4.

    PubMed  Google Scholar 

  100. Jappe U, Zillikens D, Bonnekoh B, Gollnick H. Epidermolysis bullosa acquisita with ultraviolet radiation sensitivity. Br J Dermatol. 2000;142(3):517–20.

    CAS  PubMed  Google Scholar 

  101. Baican A, Chiriac G, Baican C, et al. Metal sensitization precipitates skin blistering in epidermolysis bullosa acquisita. J Dermatol. 2010;37(3):280–2.

    PubMed  Google Scholar 

  102. Karell K, Korponay-Szabo I, Szalai Z, et al. Genetic dissection between coeliac disease and dermatitis herpetiformis in sib pairs. Ann Hum Genet. 2002;66(Pt 5–6):387–92.

    CAS  PubMed  Google Scholar 

  103. Meyer LJ, Zone JJ. Familial incidence of dermatitis herpetiformis. J Am Acad Dermatol. 1987;17(4):643–7.

    CAS  PubMed  Google Scholar 

  104. Collin P, Reunala T. Recognition and management of the cutaneous manifestations of celiac disease: a guide for dermatologists. Am J Clin Dermatol. 2003;4(1):13–20.

    PubMed  Google Scholar 

  105. Marks J, Shuster S, Watson AJ. Small-bowel changes in dermatitis herpetiformis. Lancet. 1966;2(7476):1280–2.

    CAS  PubMed  Google Scholar 

  106. Hervonen K, Karell K, Holopainen P, Collin P, Partanen J, Reunala T. Concordance of dermatitis herpetiformis and celiac disease in monozygous twins. J Invest Dermatol. 2000;115(6):990–3.

    CAS  PubMed  Google Scholar 

  107. Hervonen K, Hakanen M, Kaukinen K, Collin P, Reunala T. First-degree relatives are frequently affected in coeliac disease and dermatitis herpetiformis. Scand J Gastroenterol. 2002;37(1):51–5.

    CAS  PubMed  Google Scholar 

  108. Spurkland A, Ingvarsson G, Falk ES, Knutsen I, Sollid LM, Thorsby E. Dermatitis herpetiformis and celiac disease are both primarily associated with the HLA-DQ (alpha 1*0501, beta 1*02) or the HLA-DQ (alpha 1*03, beta 1*0302) heterodimers. Tissue Antigens. 1997;49(1):29–34.

    CAS  PubMed  Google Scholar 

  109. Marietta E, Black K, Camilleri M, et al. A new model for dermatitis herpetiformis that uses HLA-DQ8 transgenic NOD mice. J Clin Invest. 2004;114(8):1090–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Amundsen SS, Monsuur AJ, Wapenaar MC, et al. Association analysis of MYO9B gene polymorphisms with celiac disease in a Swedish/Norwegian cohort. Hum Immunol. 2006;67(4–5):341–5.

    CAS  PubMed  Google Scholar 

  111. Koskinen LL, Korponay-Szabo IR, Viiri K, et al. Myosin IXB gene region and gluten intolerance: linkage to coeliac disease and a putative dermatitis herpetiformis association. J Med Genet. 2008;45(4):222–7.

    CAS  PubMed  Google Scholar 

  112. Monsuur AJ, de Bakker PI, Alizadeh BZ, et al. Myosin IXB variant increases the risk of celiac disease and points toward a primary intestinal barrier defect. Nat Genet. 2005;37(12):1341–4.

    CAS  PubMed  Google Scholar 

  113. Wolters VM, Verbeek WH, Zhernakova A, et al. The MYO9B gene is a strong risk factor for developing refractory celiac disease. Clin Gastroenterol Hepatol. 2007;5(12):1399–405, 405 e1–2.

    CAS  PubMed  Google Scholar 

  114. Hunt KA, Zhernakova A, Turner G, et al. Newly identified genetic risk variants for celiac disease related to the immune response. Nat Genet. 2008;40(4):395–402.

    PubMed Central  CAS  PubMed  Google Scholar 

  115. van Heel DA, Franke L, Hunt KA, et al. A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat Genet. 2007;39(7):827–9.

    PubMed Central  PubMed  Google Scholar 

  116. Miyagawa S, Higashimine I, Iida T, Yamashina Y, Fukumoto T, Shirai T. HLA-DRB1*04 and DRB1*14 alleles are associated with susceptibility to pemphigus among Japanese. J Invest Dermatol. 1997;109(5):615–8.

    CAS  PubMed  Google Scholar 

  117. Lombardi ML, Mercuro O, Ruocco V, et al. Common human leukocyte antigen alleles in pemphigus vulgaris and pemphigus foliaceus Italian patients. J Invest Dermatol. 1999;113(1):107–10.

    CAS  PubMed  Google Scholar 

  118. Loiseau P, Lecleach L, Prost C, et al. HLA class II polymorphism contributes to specify desmoglein derived peptides in pemphigus vulgaris and pemphigus foliaceus. J Autoimmun. 2000;15(1):67–73.

    CAS  PubMed  Google Scholar 

  119. del Mar Saez-de-Ocariz M, Vega-Memije ME, Zuniga J, et al. HLA-DRB1*0101 is associated with foliaceus pemphigus in Mexicans. Int J Dermatol. 2005;44(4):350.

    PubMed  Google Scholar 

  120. Brick C, Belgnaoui FZ, Atouf O, et al. Pemphigus and HLA in Morocco. Transfus Clin Biol. 2007;14(4):402–6.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Excellence Cluster “Inflammation at Interfaces” (EXC306/1; to E.S), the European Community’s FP7 (Coordination Theme 1-HEALTH-F2–2008–200515) and the Swiss National Foundation for Scientific Research (31003A-121966 and 31003A-09811; both to L.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enno Schmidt MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt, E., Borradori, L., Sprecher, E., Marinovic, B., Sinha, A.A., Joly, P. (2015). Genetic and Environmental Risk Factors of Autoimmune Bullous Diseases. In: Murrell, D. (eds) Blistering Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45698-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45698-9_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45697-2

  • Online ISBN: 978-3-662-45698-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics