Advertisement

An EOG-Based Automatic Sleep Scoring System and Its Related Application in Sleep Environmental Control

  • Chih-En KuoEmail author
  • Sheng-Fu Liang
  • Yi-Chieh Lee
  • Fu-Yin Cherng
  • Wen-Chieh Lin
  • Peng-Yu Chen
  • Yen-Chen Liu
  • Fu-Zen Shaw
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8908)

Abstract

Human beings spend approximately one third of their lives sleeping. Conventionally, to evaluate a subjects sleep quality, all-night polysomnogram (PSG) readings are taken and scored by a well-trained expert. Unlike a bulky PSG or EEG recorder on the head, the development of an electrooculogram (EOG)-based automatic sleep-staging system will enable physiological computing systems (PhyCS) to progress toward easy sleep and comfortable monitoring. In this paper, an EOG-based sleep scoring system is proposed. EOG signals are also coupling some of sleep characteristics of EEG signals. Compared to PSG or EEG recordings, EOG has the advantage of easy placement, and can be operated by the user individually at home. The proposed method was found to be more than 83 % accurate when compared with the manual scorings applied to sixteen subjects. In addition to sleep-quality evaluation, the proposed system encompasses adaptive brightness control of light according to online monitoring of the users sleep stages. The experiments show that the EOG-based sleep scoring system is a practicable solution for homecare and sleep monitoring due to the advantages of comfortable recording and accurate sleep staging.

Keywords

Sleep Sleep stage Adaptive system Electrooculogram (EOG) Interaction design Sleep quality 

Notes

Acknowledgements

This work was supported by the National Science Council of Taiwan under Grants NSC 102-2221-E-009-082-MY3, 100-2410-H-006-025-MY3, and 1102-2220-E-006-001. Moreover, this paper was also supported by “Aiming for the Top University Program” of the National Chiao Tung University and Ministry of Education,Taiwan, R.O.C.

References

  1. 1.
    Aliakseyeu, D., Du, J., Zwartkruis-Pelgrim, E., Subramanian, S.: Exploring interaction strategies in the context of sleep. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part III. LNCS, vol. 6948, pp. 19–36. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Bauer, J., Consolvo, S., Greenstein, B., Schooler, J., Wu, E., Watson, N.F., Kientz, J., Bauer, J.S.: Shuteye: encouraging awareness of healthy sleep recommendations with a mobile, peripheral display. In: Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems, pp. 1401–1410. ACM (2012)Google Scholar
  3. 3.
    Berthomier, C., Drouot, X., Herman-Stoïca, M., Berthomier, P., Prado, J., Bokar-Thire, D., Benoit, O., Mattout, J., d’Ortho, M.P.: Automatic analysis of single-channel sleep eeg: validation in healthy individuals. Sleep 30(11), 1587 (2007)Google Scholar
  4. 4.
    Bulling, A., Roggen, D., Tröster, G.: Wearable EOG goggles: eye-based interaction in everyday environments. ACM (2009)Google Scholar
  5. 5.
    Chandra, H., Oakley, I., Silva, H.: Designing to support prescribed home exercises: understanding the needs of physiotherapy patients. In: Proceedings of the 7th Nordic Conference on Human-Computer Interaction: Making Sense Through Design, pp. 607–616. ACM (2012)Google Scholar
  6. 6.
    Choe, E.K., Consolvo, S., Watson, N.F., Kientz, J.A.: Opportunities for computing technologies to support healthy sleep behaviors. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3053–3062. ACM (2011)Google Scholar
  7. 7.
    Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of biological signals. Phys. Rev. E 71(2), 021906 (2005)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Costa, M., Peng, C.K., Goldberger, A.L., Hausdorff, J.M.: Multiscale entropy analysis of human gait dynamics. Physica A Stat. Mech. Appl. 330(1), 53–60 (2003)CrossRefzbMATHGoogle Scholar
  9. 9.
    Esteller, R., Echauz, J., Tcheng, T., Litt, B., Pless, B.: Line length: an efficient feature for seizure onset detection. In: Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2001, vol. 2, pp. 1707–1710. IEEE (2001)Google Scholar
  10. 10.
    Gasio, F.P., Kräuchi, K., Cajochen, C., van Someren, E., Amrhein, I., Pache, M., Savaskan, E., Wirz-Justice, A.: Dawn-dusk simulation light therapy of disturbed circadian rest-activity cycles in demented elderly. Exp. Gerontol. 38(1), 207–216 (2003)CrossRefGoogle Scholar
  11. 11.
    Fromm, E., Horlebein, C., Meergans, A., Niesner, M., Randler, C.: Evaluation of a dawn simulator in children and adolescents. Biol. Rhythm Res. 42(5), 417–425 (2011)CrossRefGoogle Scholar
  12. 12.
    Giménez, M.C., Hessels, M., van de Werken, M., de Vries, B., Beersma, D.G., Gordijn, M.C.: Effects of artificial dawn on subjective ratings of sleep inertia and dim light melatonin onset. Chronobiol. Int. 27(6), 1219–1241 (2010)CrossRefGoogle Scholar
  13. 13.
    Guo, L., Rivero, D., Dorado, J., Rabunal, J.R., Pazos, A.: Automatic epileptic seizure detection in eegs based on line length feature and artificial neural networks. J. Neurosci. Methods 191(1), 101–109 (2010)CrossRefGoogle Scholar
  14. 14.
    Iber, C.: The aasm manual for the scoring of sleep and associated events: rules, terminology and technical specifications (2007)Google Scholar
  15. 15.
    Kang, X., Jia, X., Geocadin, R.G., Thakor, N.V., Maybhate, A.: Multiscale entropy analysis of eeg for assessment of post-cardiac arrest neurological recovery under hypothermia in rats. IEEE Trans. Biomed. Eng. 56(4), 1023–1031 (2009)CrossRefGoogle Scholar
  16. 16.
    Kay, M., Choe, E.K., Shepherd, J., Greenstein, B., Watson, N., Consolvo, S., Kientz, J.A.: Lullaby: a capture & access system for understanding the sleep environment. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 226–234. ACM (2012)Google Scholar
  17. 17.
    Kuo, B.C., Landgrebe, D.A.: Nonparametric weighted feature extraction for classification. IEEE Trans. Geosci. Remote Sens. 42(5), 1096–1105 (2004)CrossRefGoogle Scholar
  18. 18.
    Kupfer, D.J., Reynolds, C.F.: Management of insomnia. N. Engl. J. Med. 336(5), 341–346 (1997)CrossRefGoogle Scholar
  19. 19.
    Lawson, S., Jamison-Powell, S., Garbett, A., Linehan, C., Kucharczyk, E., Verbaan, S., Rowland, D.A., Morgan, K.: Validating a mobile phone application for the everyday, unobtrusive, objective measurement of sleep. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2497–2506. ACM (2013)Google Scholar
  20. 20.
    Liang, S.F., Kuo, C.E., Hu, Y.H., Pan, Y.H., Wang, Y.H.: Automatic stage scoring of single-channel sleep eeg by using multiscale entropy and autoregressive models. IEEE Trans. Instrum. Meas. 61(6), 1649–1657 (2012)CrossRefGoogle Scholar
  21. 21.
    Lin, C.T., Ken-Li, L., Li-Wei, K., Sheng-Fu, L., Bor-Chen, K., et al.: Nonparametric single-trial eeg feature extraction and classification of driver’s cognitive responses. EURASIP J. Adv. Signal Process. 2008, 1–11 (2008)CrossRefGoogle Scholar
  22. 22.
    Manabe, H., Fukumoto, M.: Full-time wearable headphone-type gaze detector. In: CHI’06 Extended Abstracts on Human Factors in Computing Systems, pp. 1073–1078. ACM (2006)Google Scholar
  23. 23.
    Norman, R.G., Pal, I., Stewart, C., Walsleben, J.A., Rapoport, D.M.: Interobserver agreement among sleep scorers from different centers in a large dataset. Sleep 23(7), 901–908 (2000)Google Scholar
  24. 24.
    Norris, P.R., Anderson, S.M., Jenkins, J.M., Williams, A.E., Morris Jr., J.A.: Heart rate multiscale entropy at three hours predicts hospital mortality in 3,154 trauma patients. Shock 30(1), 17–22 (2008)CrossRefGoogle Scholar
  25. 25.
    Olbrich, E., Achermann, P., Meier, P.: Dynamics of human sleep eeg. Neurocomputing 52, 857–862 (2003)CrossRefGoogle Scholar
  26. 26.
    Pardey, J., Roberts, S., Tarassenko, L.: A review of parametric modelling techniques for eeg analysis. Med. Eng. Phys. 18(1), 2–11 (1996)CrossRefGoogle Scholar
  27. 27.
    Pincus, S.: Approximate entropy (apen) as a complexity measure. Chaos Interdisc. J. Nonlinear Sci. 5(1), 110–117 (1995)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Rechtschaffen, A., Kales, A.: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects (1968)Google Scholar
  29. 29.
    Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circulatory Physiol. 278(6), H2039–H2049 (2000)Google Scholar
  30. 30.
    Rosenberg, R.S., Van Hout, S., et al.: The american academy of sleep medicine inter-scorer reliability program: sleep stage scoring. J. Clin. Sleep Med. 9(1), 81–87 (2013). JCSM: Official Publication of the American Academy of Sleep MedicineGoogle Scholar
  31. 31.
    Schaltenbrand, N., Lengelle, R., Toussaint, M., Luthringer, R., Carelli, G., Jacqmin, A., Lainey, E., Muzet, A., Macher, J.P., et al.: Sleep stage scoring using the neural network model: comparison between visual and automatic analysis in normal subjects and patients. Sleep 19(1), 26 (1996)Google Scholar
  32. 32.
    Silva, H., Palma, S., Gamboa, H.: Aal+: Continuous institutional and home care through wireless biosignal monitoring systems. In: Bos, L., Dumay, A., Goldschmidt, L., Verhenneman, G., Yogesan, K. (eds.) Handbook of Digital Homecare, pp. 115–142. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  33. 33.
    Stepanski, E.J., Wyatt, J.K.: Use of sleep hygiene in the treatment of insomnia. Sleep Med. Rev. 7(3), 215–225 (2003)CrossRefGoogle Scholar
  34. 34.
    Takahashi, T., Cho, R.Y., Murata, T., Mizuno, T., Kikuchi, M., Mizukami, K., Kosaka, H., Takahashi, K., Wada, Y.: Age-related variation in eeg complexity to photic stimulation: a multiscale entropy analysis. Clin. Neurophysiol. 120(3), 476–483 (2009)CrossRefGoogle Scholar
  35. 35.
    Thakor, N.V., Tong, S.: Advances in quantitative electroencephalogram analysis methods. Annu. Rev. Biomed. Eng. 6, 453–495 (2004)CrossRefGoogle Scholar
  36. 36.
    Virkkala, J., Hasan, J., Värri, A., Himanen, S.L., Müller, K.: Automatic sleep stage classification using two-channel electrooculography. J. Neurosci. Methods 166(1), 109–115 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Chih-En Kuo
    • 1
    Email author
  • Sheng-Fu Liang
    • 3
  • Yi-Chieh Lee
    • 2
  • Fu-Yin Cherng
    • 2
  • Wen-Chieh Lin
    • 2
  • Peng-Yu Chen
    • 3
  • Yen-Chen Liu
    • 3
  • Fu-Zen Shaw
    • 1
  1. 1.The Institute of Cognitive ScienceNational Cheng Kung UniversityTainanTaiwan
  2. 2.Department of Computer ScienceNational Chiao Tung UniversityTainanTaiwan
  3. 3.Department of Computer Science and Information EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations