Paper-Based Inkjet Electrodes

Experimental Study for ECG Applications
  • Ana Priscila AlvesEmail author
  • João Martins
  • Hugo Plácido da Silva
  • André Lourenço
  • Ana Fred
  • Hugo Ferreira
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8908)


Electrocardiographic (ECG) acquisition has evolved imensly over the last decade in particular with regards to sensing technology. From classical silver/silver chloride (Ag/AgCl) electrodes, to textile electrodes, and recently paper-based electrodes. In this paper we study a new type of silver/silver chloride (Ag/AgCl) electrodes based on a paper substrate that are produced using an inkjet printing technique. The cost reduction, easy-to-produce methodology, and easier recycling increase the potencial of application of these electrodes and opens this technology for everyday life use. We performed a comparison between this new type of electrode, with classical gelled Ag/AgCl electrodes and dry Ag/AgCl electrodes. We also compared the performance of each electrode when acquired using a professional-grade gold standard device, and a low cost platform. Experimental results showed that data acquired using our proposed inkjet printed electrode is highly correlated with data obtained through conventional electrodes. Moreover, the electrodes are robust to both high-end and low-end data acquisition devices.


Electrodes Paper Inkjet Electrocardiography Device 



This work was partially funded by Fundação para a Ciência e Tecnologia (FCT) under the project grant PTDC/EEI-SII/2312/2012, and scholarships grants SFRH/BD/65248/2009 and SFRH/PROTEC/49512/2009, whose support the authors gratefully acknowledge. The authors would also thank the students form Instituto Superior Técnico and Faculdade de Ciências that were volunteers on this study.


  1. 1.
    Silva, H., Lourenço, A., Lourenço, R., Leite, P., Coutinho, D., Fred, A.: Study and evaluation of a single differential sensor design based on electro-textile electrodes for ECG biometrics applications. In: Proceedings of the IEEE Sensors Conference, pp. 1764–1767 (2011)Google Scholar
  2. 2.
    Silva, H., Carreiras, C., Lourenço, A., Fred, A.L.N.: Off-the-person electrocardiography. In: International Congress on Cardiovascular Technologies (CARDIOTECHNIX), September 2013Google Scholar
  3. 3.
    Cheng, J., Lukowicz, P., Henze, N., Schmidt, A., Amft, O., Salvatore, G., Troster, G.: Smart textiles: from niche to mainstream. IEEE Pervasive Comput. 12(3), 81–84 (2013)CrossRefGoogle Scholar
  4. 4.
    Marozas, V., Petrenas, A., Daukantas, S., Lukosevicius, A.: A comparison of conductive textile-based and silver/silver chloride gel electrodes in exercise electrocardiogram recordings. J. Electrocardiol. 44(2), 189–194 (2011)CrossRefGoogle Scholar
  5. 5.
    Chiodo, J., Ijomah, W.: Use of active disassembly technology to improve remanufacturing productivity: automotive application. Int. J. Comput. Integr. Manuf. 27(4), 1–11 (2014)CrossRefGoogle Scholar
  6. 6.
    Siegel, A.C., Phillips, S.T., Dickey, M.D., Lu, N., Suo, Z., Whitesides, G.M.: Foldable printed circuit boards on paper substrates. Adv. Funct. Mater. 20(1), 28–35 (2010)CrossRefGoogle Scholar
  7. 7.
    Leenen, M.A.M., Arning, V., Thiem, H., Steiger, J., Anselmann, R.: Printable electronics: flexibility for the future. Phys. Status Solidi A 206(4), 588–597 (2009)CrossRefGoogle Scholar
  8. 8.
    Tobjörk, D., Österbacka, R.: Paper electronics. Adv. Mater. 23(17), 1935–1961 (2011)CrossRefGoogle Scholar
  9. 9.
    Singh, M., Haverinen, H.M., Dhagat, P., Jabbour, G.E.: Inkjet printing-process and its applications. Adv. Mater. 22(6), 673–685 (2010)CrossRefGoogle Scholar
  10. 10.
    Calvert, P.: Inkjet printing for materials and devices. Chem. Mater. 13(10), 3299–3305 (2001)CrossRefGoogle Scholar
  11. 11.
    Clark, J.W., Neuman, M.R., Olson, W.H., Peura, R.A., Primiano, F.P.: Medical Instrumentation: Application and Design, 4th edn. Wiley, Hoboken (2009)Google Scholar
  12. 12.
    Alves, A.P., Silva, H., Lourenço, A., Fred, A.: BITalino: a biosignal acquisition system based on Arduino. In: Proceeding of the 6th Conference on Biomedical Electronics and Devices (BIODEVICES), pp. 261–264 (2013)Google Scholar
  13. 13.
    Guerreiro, J., Silva, H., Lourenço, A., Martins, R., Fred, A.: BITalino: a multimodal platform for physiological computing. In: Proceeding of the 10th International Conference on Informatics in Control, Automation and Robotics (ICINCO) (2013)Google Scholar
  14. 14.
    De Chazal, P., O’Dwyer, M., Reilly, R.: Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004)CrossRefGoogle Scholar
  15. 15.
    Engelse, W.A.H., Zeelenberg, C.: A single scan algorithm for QRS-detection and feature extraction. Comput. Cardiol. 6, 37–42 (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ana Priscila Alves
    • 1
    Email author
  • João Martins
    • 2
  • Hugo Plácido da Silva
    • 1
  • André Lourenço
    • 1
    • 3
  • Ana Fred
    • 1
  • Hugo Ferreira
    • 2
  1. 1.Instituto de Telecomunicações, Instituto Superior TécnicoLisboaPortugal
  2. 2.Faculdade de Ciências da Universidade de Lisboa, Alameda da UniversidadeLisbonPortugal
  3. 3.Instituto Superior de Engenharia de LisboaLisboaPortugal

Personalised recommendations