A Generic Effort-Based Behavior Description for User Engagement Analysis

  • Benedikt GollanEmail author
  • Alois Ferscha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8908)


Human interaction is to a large extent based on implicit, unconscious behavior and the related body language. In this article, we propose ‘Directed Effort’ a generic description of human behavior suitable as user engagement and interest input for higher level human-computer interaction applications. Research from behavioral and psychological sciences is consulted for the creation of an attention model which is designed to represent the engagement of people towards generic objects in public spaces. The functionality of this behavior analysis approach is demonstrated in a prototypical implementation to present the potential of the presented meta-level description of behavior.


Automatic behavior analysis Movement tracking Pattern recognition Estimation of engagement 


  1. 1.
    Bitgood, S.: Not another step! economy of movement and pedestrian choice point behavior in shopping malls. Environ. Behav. 38(3), 394–405 (2006). CrossRefGoogle Scholar
  2. 2.
    Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: 2005 Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 2, pp. 1395–1402 (2005)Google Scholar
  3. 3.
    Bobick, A., Davis, J.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Analy. Mach. Intell. 23(3), 257–267 (2001)CrossRefGoogle Scholar
  4. 4.
    Bongers, K.C., Dijksterhuis, A., Spears, R.: Self-esteem regulation after success and failure to attain unconsciously activated goals. J. Exp. Soc. Psychol. 45(3), 468–477 (2009). CrossRefGoogle Scholar
  5. 5.
    Candamo, J., Shreve, M., Goldgof, D., Sapper, D., Kasturi, R.: Understanding transit scenes: a survey on human behavior-recognition algorithms. IEEE Trans. Intell. Transp. Syst. 11(1), 206–224 (2010)CrossRefGoogle Scholar
  6. 6.
    Cooper, J.O., Heron, T.E., Heward, W.L.: Applied Behavior Analysis, 2nd edn. Pearson/Merrill-Prentice Hall, Upper Saddle River (2007)Google Scholar
  7. 7.
    Dijksterhuis, A., Aarts, H.: Goals, attention, and (un)consciousness. Ann. Rev. Psychol. 61(1), 467–490 (2010). CrossRefGoogle Scholar
  8. 8.
    Guevara, J.E., Umemuro, H.: Unobtrusive estimation of psychological states based on human movement observation. e-Minds 2(6), 39–60 (2010)Google Scholar
  9. 9.
    Hietanen, J.: Social attention orienting integrates visual information from head and body orientation. Psychol. Res. 66(3), 174–179 (2002)CrossRefGoogle Scholar
  10. 10.
    Hoffman, J.E., Subramaniam, B.: The role of visual attention in saccadic eye movements. Percept. Psychophys. 57(6), 787–795 (1995)CrossRefGoogle Scholar
  11. 11.
    Hunt, A.R., Kingstone, A.: Covert and overt voluntary attention: linked or independent? Brain research. Cogn. Brain Res. 18(1), 102–105 (2003)CrossRefGoogle Scholar
  12. 12.
    Ji, X., Liu, H.: Advances in view-invariant human motion analysis: a review. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 40(1), 13–24 (2010)Google Scholar
  13. 13.
    Kahneman, D.: Attention and Effort. Prentice-Hall, Englewood Cliffs (1973)Google Scholar
  14. 14.
    Knudsen, E.I.: Fundamental components of attention. Ann. Rev. Neurosci. 30(1), 57–78 (2007). CrossRefMathSciNetGoogle Scholar
  15. 15.
    Moore, T., Fallah, M.: Control of eye movements and spatial attention. Proc. Natl. Acad. Sci. U.S.A 98(3), 1273–1276 (2001)CrossRefGoogle Scholar
  16. 16.
    Müller, H.J., Rabbitt, P.M.: Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. J. Exp. Psychol. Hum. Percept. Performance 15(2), 315–330 (1989)CrossRefGoogle Scholar
  17. 17.
    Perry, R.J.: The neurology of saccades and covert shifts in spatial attention: an event-related fMRI study. Brain 123(11), 2273–2288 (2000)CrossRefGoogle Scholar
  18. 18.
    Peursum, P., Venkatesh, S., West, G.: Tracking-as-recognition for articulated full-body human motion analysis. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’07, pp. 1–8 (2007)Google Scholar
  19. 19.
    Posner, M.I.: Orienting of attention. Q. J. Exp. Psychol. 32(1), 3–25 (1980)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Rizzolatti, G., Riggio, L., Dascola, I., Umiltá, C.: Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 25(1A), 31–40 (1987)CrossRefGoogle Scholar
  21. 21.
    Shi, Y., Bobick, A., Essa, I.: Learning temporal sequence model from partially labeled data. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1631–1638 (2006)Google Scholar
  22. 22.
    Smith, K.C., Ba, S.O., Odobez, J.M., Gatica-Perez, D.: Tracking attention for multiple people: wandering visual focus of attention estimation. Idiap-RR Idiap-RR-40-2006, IDIAP (2006, submitted for publication)Google Scholar
  23. 23.
    Wickens, C.D., McCarley, J.S.: Applied Attention Theory. CRC Press, Boca Raton (2008). Google Scholar
  24. 24.
    Yakiyama, Y., Thepvilojanapong, N., Iwai, M., Mihirogi, O., Umeda, K., Tobe, Y.: Observing real-world attention by a laser scanner. IPSJ Online Trans. 2, 93–106 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Pervasive Computing Applications, Research Studios AustriaViennaAustria
  2. 2.Institute for Pervasive ComputingJohannes Kepler UniversityLinzAustria

Personalised recommendations